
ABSTRACT

CATETÉ, VERONICA MEREDITH. A Framework for the Rapid Creation of Quality-Assured Programming
Rubrics for New K-12 Computer Science Teachers. (Under the direction of Tiffany Barnes.)

When this research began, AP Computer Science comprised only 0.9% of all AP tests taken in

2014, with roughly 39,000 students [Col97]. After initiatives such as America Competes, CS10K,

CSforAll, and the official launch of the new AP CS Principles course in 2016, this number jumped to

2.1% or 104,000 students. This tremendous surge in Computer Science enrollment is a success for

the programs, but also reflects the rapid rise in the number of K-12 teachers teaching computer

science.

Because of the increasing demand for new CS Principles teachers, they have been recruited

from diverse backgrounds. Many CS Principles teachers do not have any background in Computer

Science and others have taken just one or two programming courses in college. This lack of expe-

rience makes it difficult for new teachers to identify learning goals and provide student feedback

on programming lab assignments. With the rapid growth in novice Computer Science Principles

teachers, new resources are needed to help teachers not only identify the computational thinking

learning objectives in student lab assignments, but also to help teachers grade these programming

assignments.

For CS Principles (CSP), several curricula were first designed for the college level and then used

as a basis for high school CSP classes. This means that lab assignments were not already annotated

with CSP-aligned learning objectives. I sought to provide rubrics that would help new teachers grade

the CSP labs and give students feedback on whether they were achieving the CSP learning objectives.

I first systematically made rubrics based on common Computer Science grading standards for auto

graders and intelligent tutors used in college programming courses. Through this process, I found

that the standards used for college Computer Science courses were not detailed enough to assess

beginner-level computational thinking in projects. The small portion of the initial rubric focused on

learning was biased towards expert programmers as opposed to those still learning the beginning

skills taught in CS Principles. Therefore, I reoriented the rubric-making process to be focused on

targeting CSP learning objectives.

In order to determine the learning objectives associated with each lab assignment, I applied

a Delphi method to poll experts through a controlled group decision making process. Delphi par-

ticipants generated both associated learning objectives and expected code samples for CSP labs.

These were then grouped into topical categories (abstraction, conditional logic, etc.) to develop

learning-oriented rubrics. When master CSP teachers and CS undergraduates (novices) used the

Delphi-created rubric to grade the Hangman and Brick Wall labs, they achieved a high level of inter-

rater reliability. Although the Delphi-created rubrics resulted in consistent grading, the process



to make them was too inefficient to use to create new rubrics for every CSP lab. Instead, I used

the lessons learned from the Delphi studies to create a new process based on the Nominal Group

Technique using ‘almost experts.’ This new process incorporates both frames of ‘think-pair-share’

and group decision making to expedite the creation process.

Through a series of reliability studies on the initial rubrics, I found that trained Computer Science

undergraduates were as reliable as the CS Principles Master Teachers using the rubrics, and could act

as surrogate ‘almost experts’ in systematically generating 32 learning-based rubrics using the new

methods. I tested these new learning-based rubrics with active CS Principles teachers. I provided

teachers high, medium, and low samples of student work, and had teachers mark in code where

they were looking for the associated computational thinking concepts. I analyzed the consistency of

grade distributions between graders, and also created a visualization to investigate the reliability and

usefulness of the rubrics. The visualization helped me verify that teachers using our learning-based

rubrics were on the right track for identifying computational thinking in code, but it also revealed

that more support is needed for novice CSP teachers to grade code samples that were substantially

different from the typical correct solution. These results confirmed that the modified Nominal

Group Technique using almost-experts is sufficient to create learning-based rubrics that are reliable

for assessing computational thinking in code.

I next applied Baartman’s Wheel of Competency Assessment (WoCA) to further investigate the

validity and appropriateness of the learning-based rubrics. Using WoCA, the rubrics can be measured

on 12 different quality criteria, including fitness of purpose, cost-effectiveness, meaningfulness,

and cognitive complexity. Most of the criteria (10.5 of 12) focus on usability and appropriateness for

teachers and the course content. The newly developed learning-based rubrics meet all 10.5 of these

teacher-focused WoCA criteria. This analysis shows that the newly created learning-based rubrics

are a validated method of support for identifying and understanding learning objectives in student

code by novice CS Principles teachers.

This dissertation makes several contributions. It is the first application of the Delphi method for

rubric development in K-12 CS education. I also created a novel adaptation of the Nominal Group

Technique to address the need for the rapid creation of a large set of learning-based rubrics for

computational thinking. I showed that teachers and almost-experts can generally apply the learning-

based rubrics to achieve consistent ratings of evidence of computational thinking in student code.

Finally, I have performed the first analysis using the Wheel of Competency Assessment to determine

the appropriateness of a learning-based rubric for low-stakes assessment for novice student code.



© Copyright 2018 by Veronica Meredith Cateté

All Rights Reserved



A Framework for the Rapid Creation of Quality-Assured Programming Rubrics
for New K-12 Computer Science Teachers

by
Veronica Meredith Cateté

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2018

APPROVED BY:

James Lester II Aaron Clark

Sarah Heckman Tiffany Barnes
Chair of Advisory Committee



DEDICATION

I dedicate this dissertation to the strong and courageous females who have guided me on my path

and encouraged me to pursue my own ambitions. They have taught me that if you don’t speak up

for what you want, you might end up with a disappointing sandwich made with love.

ii



BIOGRAPHY

The author has a background story so engaging that Oprah Winfrey would want to make it into a

Lifetime Original Movie. You should ask her about it one day. Bring the tissues, popcorn, and juice

boxes because it’s a roller coaster of a ride that’s too long to put here.

iii



ACKNOWLEDGEMENTS

I am grateful to the members of my committee, Dr. Tiffany Barnes, Dr. Aaron Clark, Dr. Sarah

Heckman, and Dr. James Lester II for their time, encouragement, and expertise throughout this

project.

There are people in everyone’s lives who make success both possible and rewarding. My husband,

Daniel McMullen, and mother Diana Pasquinelli, steadfastly supported and encouraged me. Daniel,

without you I may have well starved to death 30 times over throughout my doctoral studies, thanks

for putting food in front of my face.

Additionally I’d like to thank all hands and researchers who have worked on this project, including

undergraduates: Lady Kathleen (Wassell) Brennan, Erin Snider, Alex Rouse, Samuel Schoeneberger,

Meghana Subramaniam, and Kunj Patel; post-graduate student: David Warren; post-doctoral stu-

dent: Jen Albert; and CS Principles teachers: Marney Hill and Mark Ruckstuhl.

I’d also like to thank both the SIGCSE and CSTA communities for completing so many surveys

and studies and my lab mates for dealing with so many of my frustrations and jubilations as told

through songs and winded sagas.

Last but not least, I’d like to thank Caroline Law and Carla Bendezu for being awesome mentees

who make me proud of them so so often. And also Neil Robson, I taught you computer science as a

middle school student, and now you’re majoring in it at state, and I’m still here to see it.

This material is based upon work supported by the National Science Foundation Graduate

Research Fellowship under Grant No. 61273304 and the Microsoft Research Graduate Women’s

Scholarship Program.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 CS Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Beauty & Joy of Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Measuring Computational Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Classic Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Criticisms of Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Applications of Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Discussion on CS Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3 Study 1: Systematic Rubric Development for CS Principles . . . . . . . . . . . . . . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Brick Wall Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Rubric Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Rubrics in CS Ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Criteria Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Performance Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Study Design and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Context and Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Rubric Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4 Study 2: Task vs. Learning Based Rubric Evaluation . . . . . . . . . . . . . . . . . . . . . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Summer 2015 Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 The Panelists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Hangman Lab Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Survey Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Rubric Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Performance-Based Rubric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



4.5.2 Learning-Based Rubric Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.3 Between Rubrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6.2 Ease of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6.3 Score distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Study 3: Delphi Methods in CS Principles Rubric Creation . . . . . . . . . . . . . . . . 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 U.S. K-12 Computing Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Computational Thinking Rubrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Delphi Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Lab Assignment Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Panelists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Survey Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.4 Delphi Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.5 Rubric Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5.1 Delphi Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Effectiveness of Rubrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5.3 Cost-Benefit Analysis of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 6 Study 4: A Streamlined Approach to the Systematic Creation of Rubrics for CS
Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Rubrics in CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 NGT vs. Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.1 Training new ’Masters’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.2 Streamlining the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.3 Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.1 A Modified NGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4.2 Rubric Quality and Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 7 Study 5: An Evaluation of BJC Rubrics with Active CS Principles Teachers . . . . 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.1 Participant Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Lab Assignment Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.1 Intra-class correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.2 Heat Mapping and Visualization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 8 Rubric Development Assessment Using WoCA . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.3 Low-Stakes Problem-Based Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Measuring Criteria for Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.1 Why Rigorously Evaluate Rubrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.2 How to Evaluate Rubrics Meaningfully . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4 Aligning Research to the Wheel of Competency Assessment . . . . . . . . . . . . . . . . . . . 103
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
9.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Appendix A Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Beauty and Joy of Computing Lesson Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Appendix B Survey Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.1 Study 3 (Delphi) Consent forms and Survey instruments . . . . . . . . . . . . . . . . . 161
B.2 Study 5 (Rubric Use) Consent forms and Survey instruments . . . . . . . . . . . . . . 188

vii



LIST OF TABLES

Table 1.1 The research questions, associated hypotheses, and their locations in this
research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table 2.1 Differences between AP Computer Science A and Computer Science Principles
as noted by the College Board [Col15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1 Final rubric used for initial grading of student projects in Brick Wall assignment.
NOTE: item in italics are additions made to the rubric for clarity. . . . . . . . . . . 27

Table 4.1 Hangman Rubric developed from Learning Objectives and Essential Knowl-
edge selected by Delphi panelists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 4.2 Hangman Rubric developed from performance-based rubric criteria in work
by Cateté. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 4.3 Descriptive statistics for a comparison of means test on Group 1 vs. Group 2.
(In each category Group 1 is the top line.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.1 Summary of metrics used in Delphi Process implementation. . . . . . . . . . . . . 58
Table 5.2 Sample Parameters category on learning-based rubric for Hangman lab. . . . . 60
Table 5.3 A breakdown of rubric grading metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 5.4 Avg. Brick Wall project scores [0-4] using a learning-based rubric. . . . . . . . . . . 63
Table 5.5 Avg. Hangman project scores [0-4] using a learning-based rubric. . . . . . . . . . . 63

Table 6.1 Common learning objectives between between assignments with similar me-
chanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 7.1 Participant breakdown for the Spring 2017 study. Participants in the middle
row are part of both data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 7.2 A sample of the categories and learning goals for the Binary Conversion Rubric. 86
Table 7.3 A sample of the categories and learning goals for the C-Curve Rubric. . . . . . . 89

Table 8.1 A summary of processes for meeting Wheel of Competency Criteria . . . . . . . . 103
Table 8.2 Evidence for Wheel of Competency Assessment pt. I . . . . . . . . . . . . . . . . . . . 105
Table 8.3 Evidence for Wheel of Competency Assessment pt. II . . . . . . . . . . . . . . . . . . . 106
Table 8.4 Evidence for Wheel of Competency Assessment pt. III . . . . . . . . . . . . . . . . . . 108

viii



LIST OF FIGURES

Figure 2.1 (a) Computational Thinking Pattern Spiral shows concepts from the simple
to the complex (b) Comparison of CTP Graphs: Sim-Sokoban combination . . 13

Figure 2.2 A traditional approach to carrying out the classic Delphi method. . . . . . . . . . 15

Figure 3.1 Levels of abstraction for the Brick Wall assignment . . . . . . . . . . . . . . . . . . . . 24
Figure 3.2 Rubric scores for group 1 and group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 3.3 Low-level example, scored as: Accuracy = 3, Efficiency = 2, Reasoning = 1,

and Readability = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3.4 Medium-level example, scored as: Accuracy = 4, Efficiency = 3, Reasoning =

2, and Readability = 3. This program shows lack of loops and logic . . . . . . . . 32
Figure 3.5 High-level example, scored as: Accuracy = 4, Efficiency = 4, Reasoning = 4,

and Readability = 3. Program uses loops & math to generate correct output. . 33
Figure 3.6 Two brick walls with differing row alignment on the right side. . . . . . . . . . . . 34
Figure 3.7 Blocks showing student misunderstandings. . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.1 (a) New block to display a secret word ‘Hangman’ style. (b) Beginning structure
of a ‘Word-list’ block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 This figure compares projects evaluated by a performance-based rubric be-
tween group 1 and group 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.3 This figure compares projects evaluated by a learning-based rubric between
group 1 and group 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.4 Student score correlations across rubrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.1 A simplified version of the Delphi Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 5.2 Levels of abstraction for the Brick Wall assignment . . . . . . . . . . . . . . . . . . . . 57
Figure 5.3 Block displays a secret word ‘Hangman’ style. . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 5.4 A portion of the code sample critiqued by Delphi Panelists in Round 3. . . . . . 60

Figure 6.1 (a) The Delphi Process hinges on iterative cycles of survey generation and
response aggregation. (b) The Nominal Group Technique encourages partici-
pants to write ideas down individually prior to sharing with the group. . . . . . 71

Figure 6.2 Our Modified Nominal Group Technique pairs participants prior to group
discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 7.1 Base Snap! code for a Decimal to Binary conversion block. . . . . . . . . . . . . . . 81
Figure 7.2 Level 1 and 2 of the C-Curve algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 7.3 Extended recursion levels of the C-Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 7.4 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary

Conversion 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 7.5 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary

Conversion 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 7.6 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary

Conversion 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ix



Figure 7.7 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-
Curve Sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 7.8 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-
Curve Sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 7.9 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-
Curve Sample 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 7.10 Combined score distribution for C-Cure Sample 2, ICC(2,14)=.75. . . . . . . . . . 92
Figure 7.11 Teacher score distribution for C-Cure Sample 2, ICC(2, 6)=.74. . . . . . . . . . . . 92
Figure 7.12 Student score distribution for C-Cure Sample 2, (ICC2, 8)=.31. . . . . . . . . . . . 93

Figure 8.1 Baartman’s Adapted Framework: The Wheel of Competency Assessment . . . . 100

x



CHAPTER

1

INTRODUCTION

In 2010, six different pilot courses were proposed for the new Advanced Placement Computer

Science Principles course being developed by the College Board. One such proposal was to refit the

college-level Beauty and Joy of Computing course into the CS Principles framework. Both courses

were designed using the 7 Big Ideas of computing (Abstraction, Creativity, Algorithms, Programming,

the Internet, Big Data, and Social Impacts of Computing) so relatively minor adjustments had to

be made to align to the new framework. Unfortunately, throughout the initial pilot years, the CS

Principles framework as well as the BJC curriculum underwent numerous changes. This created

a situation where teachers participating in the CS Principles (BJC) pilot program were unsure of

the intended learning objectives of the BJC labs. Several of the original BJC assignments were more

rigours than what was required for AP CS Principles so teachers were less prepared to teach them or

provide sufficient student feedback for them. Furthermore, as BJC was originally a college course,

required documentation for K-12 school systems didn’t exist. This includes things like pacing guides,

blueprints, and other documents linking the course materials back to the national standards in the

AP CS Principles Framework.

CS Principles teachers have numerous backgrounds ranging from the more typical business and

math to Spanish language and chemistry. Many do not have a background in Computer Science

and might have taken just a few programming courses in college. This lack of experience made

1



it difficult for teachers to identify what learning goals were associated with each lab assignment.

Those who originally made the lab assignments had moved on or were no longer available to

work on the project. While the pilots for CS Principles were occurring, there was another national

movement, CS10K, where Universities and other groups were working to train 10,000 new high

school computing teachers. This eminent growth in novice Computer Science Principles teachers,

meant that new resources would have to be built to help teachers not only identify the computational

learning objectives in student lab assignments, but also to help teacher grade these programming

assignments. As one of our newer BJC professional development attendees stated, “I’m not sure

what my students are supposed to be be learning from this lab or even how to tell if they did.”

There are over 42,000 high schools in the United States and despite the critical and growing

importance of computer science, only 2,100 of them are certified to teach Advanced Placement1

Computer Science A (AP Computer Science). When this research was first proposed, AP Computer

Science comprised only 0.9% of all AP tests taken in 2014, roughly 39,000 students [Col97]. After

initiatives such as America Competes, CS10K, CSforAll, and the official launch of the new AP CS

Principles course in 2016, this number jumped to 2.1% or 104,000 students. This tremendous surge

in computer science enrollment is a success for the programs, but also reflects how many new

computing teachers are entering the fold and teaching AP level courses.

1.1 Research

Due to the increased need for computer scientists and the unprecedented growth of CS Principles, I

have decided to focus on how we can help novice CS Principles teachers identify student learning of

computational thinking through coding assignments by investigating the following set of questions

listed in Table 1.1. My overriding research goal is to identify and clarify core lessons of the CS

Principles curriculum, specifically in BJC, in order to provide teachers with a rubric system to

evaluate student artifacts for evidence of achieving the computational learning objectives.

I begin by first creating rubrics using methods from auto graders and intelligent tutoring systems

(Chapter 3). I then refactor the rubric design to use learning objectives established by an expert

Delphi panel and compare it to the initial rubric design (Chapter 4). I compare a more traditional

Delphi method to a modified version that is more time efficient (Chapter 5). The lessons from that

study, I then apply to a more streamlined process in Chapter 6 in order to create the full set of rubrics

for BJC teachers. In the final study, I analyze those rubrics for reliability and teacher helpfulness in

their ability to identify computational learning objectives in code (Chapter 7). I conduct an overall

level of quality analysis in Chapter 8 to conclude this research. My contributions are listed briefly in

1Advanced Placement courses offer students college credit for taking higher level courses in high school.

2



the next section. Then Chapter 2 presents relevant background literature. Those familiar with my

proposal may wish to start at Chapter 5.

Table 1.1 The research questions, associated hypotheses, and their locations in this research.

Research Questions & Hypotheses Chapter
How can we help teachers better understand learning objectives for labs and
identify whether they are achieved in student artifacts?

[H1]We can use the Delphi method to create learning-based rubrics that per-
form better than traditional task-based rubrics at helping teachers grade assign-
ments meaningfully. [H2]Use of the Delphi method to create rubrics will lead
to sufficient levels of inter-rater reliability among novice graders for low-stakes
assessments such as lab programming projects.

Chapter 4;
Chapter 5

How can we modify educational psychology methods to meet our needs for
creating a large set of rubrics for classroom settings?

[H3]We can use a modified NGT approach to efficiently and quickly produce a
full suite of quality assured rubrics for BJC lab assignments. [H5]We can apply
the Wheel of Competency Assessment to show that the created rubrics are
appropriate for low-stakes assessment of CS Principles labs.

Chapter 6 & 7;
Chapter 8

How well do teachers identify computational thinking in student artifacts using
task-based and learning-based rubrics?
[H4] Learning-based rubrics will help support beginning CS Principles teachers
consistently assess important computational thinking elements in student code.

Chapter 7

1.2 Contributions

1. I conducted the first application of the Delphi Method to create content-validated rubrics

for a K-12 computing course. Using these methods we were able to gain insights on stream-

lining a robust process for creating a large quantity of quality rubrics, which benefits the

rapidly expanding CS Principles program and can be applied to other newly developed novice

computing courses.

2. I redesigned the rubric creation process to be more cost-effective and thus feasible to replicate

for use in real-life applications and school settings. This allows for quick distribution of

rubrics on rapidly changing courses. As computing trickles down the K-12 pipeline, we will be

presented with more teachers from diverse backgrounds and course content that will have to

3



adjust as students in lower grades become more experienced. Thus, being able to generate

new reliable rubrics quickly and so that they support novice teachers will be beneficial.

3. I proved that the rubrics created with the new modified NGT process and almost-experts are

as reliable as the initial Delphi generated rubrics. As our modified NGT method was more cost-

effective and efficient due to using surrogate experts, it was critical to ensure that they held

up to the same standards as the initial Delphi rubrics. Ensuring a level of quality assessment

to our rubrics is important for their adoption by teachers.

4. I devised a novel application of the Baartman’s Wheel of Competency Assessment to establish

a high level of validity, value and acceptability of the rubrics. By aligning our rubrics to the

Wheel of Assessment we were able evaluate whether these rubrics met their intended goals.

As we used new tools and open-ended processes to assess student work, it is important to

evaluate their appropriateness for use by new CS Principles teachers.

5. I led a junior research team composed of upper classification computer science undergradu-

ates in generating 32 Beauty & Joy of Computing rubrics designed to measure implementation

of learning objectives in student lab assignments. This is the first such system, as well as the

first such system specifically designed for beginning teachers.

4



CHAPTER

2

LITERATURE REVIEW

As Jeannette Wing first posed in 2006, “computational thinking involves solving problems, designing

systems, and understanding human behavior, by drawing on the concepts fundamental to Computer

Science [Win06]." The National Research Council (NRC) believes that computational thinking is

a skill necessary for all persons in every field. When they met to discuss the scope and nature of

computational thinking in the classroom, leaders deliberated on how we recognize computational

thinking in students and their work [Nat10]? As a part of this research, I intend to help answer

this question. In order to do so, I draw on frameworks and methods from Computer Science and

Education literature. Below I present background information on CS Principles and the Beauty and

Joy of Computing followed by measures of computational thinking and approaches to conducting

Delphi studies.

2.1 CS Principles

With the introduction of CS Principles, there has been some resistance concerned with its replace-

ment or duplication of AP Computer Science, a course with historically low turnout and diversity

5



[ACM15]. In fact, AP Computer Science A was the least diverse AP course 1 from 2010-2014 with 85%

male and 84% Asian or Caucasian students [Col97]. Advocates for CS Principles reiterate that CS

Principles is not a replacement and is instead a complement to the original AP Computer Science

course. The primary difference between the two courses is that AP Computer Science is an applica-

tions course with over 20 hours of hands on lab and Java programming assignments recommended,

whereas CS Principles has programming as only a small portion of the class focus, and even then,

the programming is typically done in a non-syntax specific manner (e.g. Snap!, AppInventor etc).

In CS Principles, the creators want to bring home the global impacts and widespread influence of

computing technologies. See Table 2.1 below for key difference between the two courses.

Table 2.1 Differences between AP Computer Science A and Computer Science Principles as noted by the
College Board [Col15].

AP Computer Science A AP Computer Science Principles
Curriculum is focused on object ori-
ented programming and problem
solving

Curriculum is built around fundamentals of computing
including problem solving, working with data, under-
standing the Internet, cyber security, and programming

Java is the designated programming
language

Teachers choose the programming language(s)

Encourages skill development among
students considering a career in com-
puter science or other STEM fields

Encourages a broader participation in the study of com-
puter science and other STEM fields, including AP Com-
puter Science

AP assessment experience: Multiple-
choice and free-response questions
(written exam)

AP assessment experience: Two performance tasks stu-
dents complete during the course to demonstrate the
skills they have developed (administered by the teacher;
students submit digital artifacts) Multiple-choice ques-
tions (written exam)

Researchers have found that the disconnection between computer programming in AP Computer

Science and its implications for people and everyday lives has impacted the overall representation

of females interested in taking the course [Col97]. We see from other STEM courses that females

are interested and capable in Math, Biology, and other science courses [Mod12]. Women have the

same capability to take a programming course, however they don’t see how it relates to or impacts

societal good. Based on this evidence, the NSF and College Board paired up to create a computing

principles course that focuses on the people and societal impacts of computer science.

1This statistic does not include the four culture courses (German, Italian, Chinese, or Japanese), which typically have a
low turnout.

6



The CS10K project mentioned previously is focused on two new courses: Exploring Computer

Science (ECS) and Computer Science Principles. Both courses focus on making computing relevant

to underrepresented minorities; however, their benefits are slightly different. AP courses are often

the only high school courses that offer college credit, which make them attractive to students and

schools. They also offer a point of national leverage and hold students to the same standard of final

exam. ECS is important for those who might be intimidated by an AP course. ECS offers a broad

range of ideas and counts towards college prep and Career and Technical Education credit (CTE).

One of computer science education’s landmark publications is the book Stuck in the Shallow

End (SSE), by Margolis, which discusses the racial inequities in the computing classroom. This book

is the culmination of several years of research on the Los Angeles Unified School District (LAUSD).

The findings included a lack of qualified teachers and minimal community support for CS teachers

in low-income schools [Mar08].

Three case studies are detailed in SSE; the first study is in a lower income school with a pre-

dominantly Latino and English learner population. This school had computer labs and equipment

available, although the only computer programming course stopped being offered during the third

year of the study. The promotional videos showcasing the school’s status as a Digital High School

show students using computers for courses like art and design. The programming teacher was

primarily a mathematics teacher who was self taught in computing. The students copied programs

from a projector and wrote them into a computer; rarely would an activity or assignment go beyond

calculations. Furthermore, when there was a class being offered, not many minorities were in it, as

guidance counselors would relegate these students to the vocational wing. The minority students

were often seen as lacking the ability to do the higher level thinking required for computing. It was

the view of administration that since many students did not know English well enough, it was foolish

to teach them higher level courses.

Secondly, in a predominantly African American school, of lower middle class level, computing

courses were again being taught on a basic level; higher computational thinking concepts were not

being utilized. This school had a group of students who self-identified as “techies" who would go

around helping the administration keep computing labs up to date and fixing technical problems.

The computing labs were often off limits and did not have Internet access at each machine. This

school was also failing the mathematics end of grade exams and had low marks in the No Child Left

Behind program. In this case, the administration did not want to sacrifice a teacher to computer

science, a course that isn’t required for graduation, when a more critical math class could be taught.

There was a third affluent school that was a part of the Digital High School program, which did have

well supported technology and computing programs. However, the school students and counselors

themselves promoted a sense of culture around CS as being ‘white’ and for a particular kind of person;

7



minorities and girls felt excluded. So even though the students had access to quality programs, they

did not want to take part because of what their peers might think, or how their counselors viewed

them.

This research gave way to the enhancements of teacher training and enrichment to AP Computer

Science. Unfortunately, for many of the students, this barrier was too high for those lacking prior CS

knowledge or experience. ECS was the answer to the gap in LA and other similar areas. It targets 9th

and 10th grade mostly (although some use it in middle school or higher grades) and includes the

cultural aspects of students in the course. ECS also has a very tight knit community of teachers and

teacher training available. In order to ensure the same quality of teaching and student experience,

ECS also features a very strict curriculum (albeit an engaging one). Researchers still wanted to

produce a high enough level computing course to count as AP while addressing the similar diversity

problems. CS Principles was created to be both informative enough and flexible enough to work as

an AP credit.

CS Principles is a course framework for teaching the principles of computer science. The creators

of this framework identified seven big ideas central to computing. In addition to programming;

abstraction, algorithms, and social impact are also central to this course. It is important for students

in CS to not only know about syntax while programming, but also to focus on the bigger picture, such

as using abstraction to simplify problems and break things down into sensible pieces. The creators

want students to be able to abstract algorithms and apply them to different areas. An example

of this is researchers at Microsoft using the same kind of algorithms for detecting spam mail to

help identify bad blood cells for those with HIV [Cla11]. Being able to make connections between

‘boring’ tasks and life saving techniques is a brilliant way to attract a more diverse demographic into

computing. A research study on women and career perspectives, found that women want careers

that help people [Mod12; Cec09; Sch08]. Highlighting the global impact of computing can make

computer science a viable option for those who want to focus on projects helping people. The AP

exam for CS Principles has also been modified compared to other standard exams. Students turn

in a Performance Task portfolio that contains both collaborative and individual projects. Projects

entail both written response and creation of a digital artifact. The performance tasks are designed

to allow students to have broad latitude in personally selecting their focus and topics.

2.1.1 Beauty & Joy of Computing

Since CS Principles is a framework for a course, there are many different implementations of it.

Ralph Morelli, a professor at Trinity College who joined during the Phase II pilots in 2012, uses a

mobile computing approach to attract students to CS Principle. Similarly, Kelvin Sung a professor at

8



the University of Washington Bothell, who joined CS Principles after working with Larry Snyder (a

Phase 1 CS Principles host), started a digital thinking course focused on game development [Mor13;

SS14]. BJC on the other hand uses a syntax free language called Snap! as its main vehicle; it also

incorporates mobile apps, and game development. Each course has been implemented with specific

goals in mind and has separate strengths. I will discuss a few of these and then give an in depth look

into the BJC curriculum.

Each of the CS Principles implementations revolves around the 7 big ideas of computation:

creativity, abstraction, algorithms, programming, the Internet, big data and global impact. What

distinguishes the implementations is how much time they devote to each topic, and what tools

they use to do so. In the first phase of CS Principles pilots, coverage of algorithms ranged from

13% to 29% [Sny12]. In the case of our first CS Principles example, Mobile CSP by Morelli, the core

programming aspects of the class are done through MIT’s AppInventor technology. Mobile CSP

is broken into 7 units, the first being a setup and pre-course unit, the others revolving around

mobile applications and creativity. These units are: Mobile computers and mobile apps; Graphics

and Drawing; Animation, Simulation, and Modeling; Algorithms and Procedural Abstraction; Lists,

Databases, Data and Information; The Internet [Tri15]. The first three units utilize AppInventor

tutorials and activities from CS Unplugged [Can15]. For the data section AppInventor allows students

to use built-in database features highlighting tagging, persistent data, and shared data. Mobile CSP

features 32 CS Principles (or non-programming) lessons and 28 programming lessons. Morelli offers

a miniature Massive Open Online Classroom (MOOC) to train teachers in using MIT’s AppInventor

software and allows teachers to pick and choose which modules they apply to their course [Mor15].

In Mobile CSP students learn computer science by building socially useful mobile apps.

Similar to Mobile CSP, Kelvin Sung’s Digital Thinking course is also themed, this time around

video game development. The implementation at University Washington-Bothell (UWB) is delivered

as a university-freshman level, disciplinary overview. The developers of the course wanted to focus

on giving students an ‘authentic’ programming experience, i.e. a text-based language. C# and an

XNA game-development plugin for Visual Studio was chosen as the main outlet for programming.

The course is adapted from a CS1 game course which utilized an XNACS1 library as an extra layer of

abstraction onto C# programming. Students only needed to learn two main functions (Initialize-

World() and UpdateWorld()) and one object (XNACS1Rectangle) to work with the library [SS14]. Of

the 33 students in the course, just two failed to show up to the final exam and were unsuccessful

in the course. The Digital Thinking course showed that they could successfully teach students CS

Principles while using a text based language approach. The other aspects of the course include its 11

week lecture series covering topics such as Digitization and the CD ROM; Color + Binary Numbers;

Privacy and Ethics; Intro to Processing; Processing with Variables; Data Types and Functions; Loops

9



and Conditionals; Computational Complexity; AI; Instruction Execution; Networking and DNS;

and finally WWW: Search and Tagging. This course focuses much more on the lower level details of

computing and digitization than other implementations like Mobile CSP.

BJC aligns with Mobile CSP in that it uses a graphical language approach and uses Blown to

Bits as a reading companion for the class. Blown to Bits: Your Life, Liberty, and Happiness After the

Digital Explosion gives a balanced perspective on personal data and the digital age. A large portion

of the book covers ethics in computing and the dangers of having information stored on the Internet,

some by choice others not. Both the high school teachers and students find this book very intriguing

and socially relevant. Unlike a traditional textbook, this one is written as pop fiction and is meant

to engage the reader. BJC teachers have been very quick to pick up the literature and are able to

facilitate discussions around the different chapters. The book does a good job at relating to topics

the students are learning like bits and binary to information or technology they use every day.

BJC emphasizes reflection on the impacts of computing on society because the designers want

students to be critical thinkers, understanding the (often unintended) social, ethical, and economic

implications of technology and computing. In each implementation of BJC, current events and

interdisciplinary applications are emphasized to connect with students and maintain relevance.

The latest version of the course offers 20 topical units, the first fifteen being organized by pro-

gramming concept, and the remaining five as extensions (e.g. Simulation in Science) [Uni15]. The

programming units are accompanied by additional videos and resources on a non-programming

topic such as ethics in computing or social implications of computing. What separates BJC is its

inclusion of recursion and higher order functions. From the program’s funding grant, “BJC invokes

passion, beauty, joy, and awe through engaging students in a rigorous computing curriculum that

promotes creativity and collaboration using Snap!’s visually rich programming environment, while

also provoking thought around current events and how computing relates to people’s lives” [Gar11].

The researchers believe that recursion and higher order functions (HOF) exemplify this beauty of

abstraction, one of the core ideas in computer science and in the CS Principles course design.

A higher order function is one whose domain or range includes other functions [AS96]. Higher

order functions are an extremely powerful means to capture patterns of control flow in a program,

eliminating the need to keep track of index variables and individual array elements. In order to

successfully teach recursion and HOF the researchers built the Snap! programming language to

support these implementations [Har14]. An example of this is using functions as data in the “map
over” block where a user can map an operation like 5× x over a list resulting in each element

of that list being multiplied by five. Other examples include storing a list of procedures that can

be iterated through and executed as needed [Uni15]. Although these types of applications are

generally considered complex and left until a CS2 course [Eng15], the simplistic interface of Snap!

10



allows students to implement and grapple with the ideas of these at a much earlier point. Where as

Digital Thinking focused on an authentic programming environment, BJC focuses on authentic

programming problems.

With many of our CS Principle teachers being new to the curriculum or even subject, we must

be able to support them and help them identify what students are learning, how they are learning,

and ways in which we can facilitate teachers teaching. Shulman suggests that teachers should have

a strong background in three main areas: subject matter, curriculum knowledge, and pedagogical

experience [Shu86]. Teachers can go to professional development training for curriculum and have

pedagogical experience already. The main part where CS educators can help is in the subject matter.

Without strong preparation in the subject matter, teachers are consistently just a step ahead of their

students. Many teachers can get flustered when students ask questions that they don’t know the

answers to [CST08]. Gal-Ezer recommends that teachers need to have the computing skills, plus the

ability to convey it to kids [GES10]. It’s difficult to convey knowledge at a lower level when you don’t

know the knowledge to begin with.

2.2 Measuring Computational Thinking

As researchers have begun exploring the space of computational thinking (CT), the definition has

morphed; specifically to include “formulating problems so their solutions can be represented as

computational steps and algorithms" [Aho12]. From a recent survey of the field, Shuchi Grover and

Roy Pea compiled a list of elements that are now widely accepted by the academic community as

comprising computational thinking:

• Abstractions and pattern generalizations

(including models and simulations)

• Systematic processing of information

• Symbol systems and representations

• Algorithmic notions of flow of control

• Structured problem decomposition

• Iterative, recursive, and parallel thinking

• Conditional logic

• Efficiency and performance constraints

• Debugging and systematic error detection

Brennan and Resnick break computational thinking down into three areas: concepts, practices,

and perspectives [BR12]. Concepts are the elements of programming such as conditionals and

parallel threads. Practices are performing tasks including debugging and iterative design. Lastly,

they include perspectives, which is the more abstract area in his breakdown. Computational think-

ing perspectives, as described by Brennan and Resnick, are demonstrated through how students

form thoughts about the world around them and about themselves. One can do this by making

11



connections between other concepts or applications, by expressing themselves through computing

or asking questions [BR12]. Pulling code from children in the Scratch community, they used the

Scrape tool [Wol11] to analyze code for frequencies of block use. They compared a new member’s

project (1 week in community) to a more active member’s project (3 year member, 49 projects).

Results show there is a clear distinction in number and type of blocks used, demonstrating the

differences in understood CT concepts. However, their results were limited as they were unable

to identify practices or perceptions of the designers. The researchers followed up with in-person

interviews and asked kids what parts of their code did. The researchers were surprised however,

to find out that the kids did not always know for sure. In one case, researchers were interviewing

a student about his project, and the kid told them that he borrowed the code from someone else

because the results looked cool. From this the researchers found that presence does not equal deep

understanding. They also asked about practices, however the kids claimed to never get stuck and

had lapses in memory. The third stage of research for studying computational thinking involved

a classroom setup with design scenarios. Students in class were given external programs over the

course of the semester and were told that another student needed help fixing his program. From

this, researchers could get a more accurate report on strategies and practices involved, but again

learning about perspectives was difficult. Limited observations did not provide the appropriate

level of insight into the thought formation process of the students.

In Brennan and Resnick’s research, they were trying to develop a framework for studying the

development of computational thinking. One of the difficulties they had in analyzing Scratch projects

was the projects from Scratch Online that were remixed from others. They were unaware of the

students’ lack of knowledge. In Snap! projects, students do not have the ability to remix other works,

which alleviates the problem of copy-paste. Students would have to understand what is going on

before they finish. Therefore, if the students received directions for a project instead of a nearly

completed project, they would be able to demonstrate CT concepts.

Further work by Koh attempts to develop a method for the automatic recognition of compu-

tational thinking. In Koh’s 2010 paper, they use a computational thinking spiral; see Figure 2.1 (a),

developed for the Scalable Game Design course to analyze what computational thinking patterns are

in students’ code. When analyzing the student project (written using AgentSheets) the researchers

look at program behavior similarity as well as use latent semantic analysis (LSA) to evaluate student

code. They illustrate the frequency and types of critical thinking patterns implemented in their

Computational Thinking Pattern (CTP) Graph (a star plot with CT’s listed as the outer vertices),

Figure 2.1 (b).

The authors suggest that the CTP Graph could potentially demonstrate the existence of knowl-

edge transfer, not just in CS but also in other fields by layering a student’s projects over time [Koh10].

12



(a) (b)

Figure 2.1 (a) Computational Thinking Pattern Spiral shows concepts from the simple to the complex (b)
Comparison of CTP Graphs: Sim-Sokoban combination

The authors hope that use of the graph will allow reviewers to more easily see the degree to which

concepts are present. Current limitations include, as Koh states, the “arbitrary nature" of the speci-

fied computational thinking patterns used in the graph as well as the number of them. The patterns

specified in the CT spiral include items such as diffusion and hill climbing that aren’t necessarily

generalizable concepts. The researchers also had difficulty in differentiating the concepts. We agree

that the CTP graph could be useful for an at-a-glance overview of particular concepts that show up

in students’ code.

In the same spirit of a rubric for evaluation, Concept Inventories (CI) are being used by STEM

fields to measure misconceptions and conceptual understandings in a topic across instructors,

institutions, and pedagogical practices. A concept inventory is a standardized assessment tool

designed to measure student understanding of the core concepts of a topic [Gol10]. These are

designed to be metrics that evaluate the overreaching fundamental concepts and not an exhaustive

final examination. The purpose is to improve pedagogy, rather than critically assess students [AW11].

The generality of the CI is what gives it such broad range of application across institutional domains.

One of the most used concept inventories to be developed is the Force Concept Inventory (FCI)

used by Physics, developed in 1992 [Hes92]. Repeated use of the FCI enlightened teachers to the

misconceptions that students had about force, even after significant instruction [CM01]. Results of

the FCI led to a great reform in Physics education including use of Peer Instruction [CM01]. Hake

ran a study with 6000+ students in 62 different courses, and found that in each traditional course

13



there were lower learning gains2 (NG ≤ 0.3) compared to 85% of interactive-engagement courses

(0.3 ≤NG ≤ 0.7) [Hak98]. The strength of this study was that is was able to use the FCI (now a gold

standard for other CIs) as a common measure among institutions and instructors.

Taylor performed an extensive literature review in 2014 investigating the development, use, and

difficulties of CIs for Computer Science [Tay14]. Only two validated CIs for Computer Science exist.

They are both at the University level, one for Digital Logic created in 2010 [HH10], and another for

CS1 (language independent) created in 2011 [TG11]. The CS1 concept inventory is actually described

as a computational assessment, and question answers do not follow the typical creation process as

other CIs, but is nonetheless valid via mass distribution testing. Other unvalidated or incomplete

CIs have been created for Operating systems [WT14], Computer architecture [Por13], Algorithms

and Data structures [PV13], and Binary Search Trees and Hash tables [KW14].

The typical process for creating a concept inventory is very lengthy and involves determining the

topics, identifying student thinking, creating open-ended survey questions, creating forced-answer

tests, validating test questions through interviews with experts, followed by administering and

statistically analyzing the inventory [AW11]. The importance of identifying student thinking is to

add valuable distractor answers to multiple choice questions. The distractor draws students with

misconceptions toward the associated distractor, which gives test administrators (teachers) insight

into which concepts and misconceptions students are struggling with.

Other common practices for developing a CI include using a Delphi Process to facilitate reaching

a consensus among CI developers for key concepts [Gol08]. Taylor discusses difficulties unique to

the computing discipline. One of the main arguments is that, unlike the older fields of Calculus and

Newtonian mechanics, Computer Science is changing rapidly. The time and effort being used in

other STEM fields is worth it because those fields are not as likely to change in the next 20 years. BJC

and CS Principles teachers are requesting materials to identify learning objectives, for themselves,

in course materials. They are unclear of the current learning goals in the programming assignments,

and would benefit from a rubric letting them know what a particular concept looks like in code. As a

concept inventory asks coding questions that reveal particular understandings, the rubric would

reveal code that applies to known objectives. In order to proceed with this development of a rubric,

we can use similar practices to those used for concept inventories, particularly Delphi Processes.

2.3 Delphi

The Delphi process is a technique originating in the 1950s to obtain the most reliable consensus of

opinion from a group of experts using intensive questionnaires interspersed with controlled opinion

2Normalized Gains (NG) were used to account for initial student knowledge

14



feedback [DH63]. Instead of relying on random samples, Delphi studies represent the best thinking

and opinions of a group of people chosen for their special knowledge and experience [AZ96; Lec84].

As emphasized by Adler, expertise is not tied to having a Ph.D. in the subject, but rather knowledge

and practical engagement with issues under investigation [AZ96].

The Classical Delphi is characterized by four pillars: anonymity of participants, iteration for

participants to refine their views, controlled feedback informing participants of other perspectives,

and statistical aggregation of the group response to allow for quantitative analysis and interpretation

of data [RW99]. As part of the Delphi Process, panelists complete a series of questionnaires which

are analyzed and processed, with the results integrated into the next stage of survey rounds; Figure

2.2 outlines this process.

Figure 2.2 A traditional approach to carrying out the classic Delphi method.

As outlined by Skulmoski, the typical Delphi method can vary greatly in application [Sku07]. The

modified Delphi comes in many forms and has evolved over the last few decades. We’ll explain the

Classical and some of these modified Delphi the subsection below.

2.3.1 Classic Delphi

Adler and Zigler pose that one should use a Delphi study to help make informed decisions when the

problem has no monitored history nor adequate information on future/present development and

for problems that require various perspectives [AZ96]. To its core the Delphi has two main phases, 1.

knowledge generation 2. knowledge evaluation.

15



Project Delphi was originally used in the early 1950s by the U.S. Air Force to apply expert opinion

to the estimation of bombing requirements to reduce enemy munitions output [DH63]. In this

process, experts were identified and independently answered a series of questions eliciting the

creation of recommendations. Researchers then had a moderator team collate the responses, and

give the information back to the experts (again independently) so that they could narrow down their

responses and reach an agreement. The researchers used a moderator team as a go between to help

eliminate researcher bias in the coding of responses in the study.

In the 1970’s Linstone and Turoff used the Delphi method to make policy judgments. They

valued the Delphi as a tool for policy type questions that involved aspects such as goal formation

for which their were no overall experts, only advocates and referees. For these policy questions,

the resolutions must take into consideration the conflicting goals and values espoused by various

interest groups as well as facts and staff analysis [LT75]. Linestone and Turoff use the Delphi to

help stakeholders formulate ideas, expose options, determine positions, explore disagreement, and

evaluate underlying reasons all while maintaining an objective perspective. They found 3 rounds to

be sufficient in attaining stability in responses. When analyzing Delphis they found that the most

common judgment indicators were simple rank and likert type questions. Linstone and Turoff also

set the standard for consensus to be when the interquartile range is no larger than two units on a

ten unit scale.

By the 1980’s the Delphi method had started being used for futures predictions. In order to make

informed decisions on policies and funding that would impact the mentally ill for the next 20 years,

Lecklitner surveyed 345 persons that played the most prominent roles in decisions regarding the

rights of the mentally ill. In this situation, stakeholders now included current and former mental

health care recipients, parents and family, mental health and social service providers as well as

patient rights advocates, community representatives, and academics and researchers in related

areas. In Lecklitner’s study the samples represented the best thinking and opinions of a group of

people chosen for their special knowledge and experience [Lec84]. Only two rounds were conducted

in this study, the first to generate forecasts on quality of care and concerns that the group had. The

second round to generate plausible solutions to these issues. The main goal was not to come to a

single consensus, but rather to get people talking about and making informed decisions about the

future.

The systematic process of opinion gathering that is the classical Delphi has been outline by

Brooks in the following eight steps [Bro79]:

1. Panel of experts is identified.

2. The willingness of the individuals to participate is determined.

16



3. Individual input on a given issue is gathered and combined into basic statements.

4. The data provided by the panel are analyzed (by a moderator team).

5. The assembled group input (questionnaire) is mailed to each panel member for assessment.

6. The new input is analyzed (by the moderators). The results, indicating the distribution of

responses, are returned to the panel.

7. Each participant is asked to examine the data and to reassess his own position based on the

group’s responses. A participant whose personal position varies significantly from the group

norm is asked to provide a rationale to support the divergent view. The length of the rationale

(remarks) is limited to keep responses brief.

8. The input is analyzed by the researcher. The input is shared, in addition to the minority

supporting statements, with the panel. Each member is asked again to review his position;

and, if still not within a specified range, to support that position with a brief rationale.

From the early days of the Delphi, the process has begun to morph in new ways to accommodate

the growth in diverse sets of research questions. One variation to the classical Delphi has been

scope of response in the first round. In Friend’s research, panelists were given an initial set of narrow

questions based on literature derived content instead of generating the initial statements or opinions

to a problem [Fri01]. This is further expanded in Cabaniss’ study on computer-related technology

use by counselors, Delphi panelists were tasked with submitting written examples of CRT use by

counseling professionals [Cab01]. This deviated from the traditional survey format of Likert type

questions, providing a richer context of understanding to the researchers.

2.3.2 Criticisms of Delphi

Since its inception, the Delphi model has drawn criticism and support. The primary source of

criticism comes from a report from RAND researcher Harold Sackman who identified perceived

failings of the method [Sac74]. Many scholars have built on this work either using it to refute or

expand further criticism. In general, criticism of the method falls along three lines; those relating to

the role of the researcher, those relating to the role of the experts, and those related to the process

itself.

The criticism with a researcher using Delphi starts before the process begins as there are no

clear guidelines on how to employ the method [LT75]. Researchers can confound the process on

start by using vague initial questions [Sac74] and researchers engaged in the method suffer from

“hurry and wait syndrome” needing to rush data analysis in order to continue the process without

17



losing expert participation [Jud72]. Supporters respond primarily by trying to outline what is and

is not a true Delphi study [RW99] citing poor implementation as incorrect use by the researcher.

In addition new technologies such as the internet minimize “hurry and wait” by shortening the

delivery time of next rounds to participants [Sku07].

Criticism of the method also focuses on the use and behavior of experts. Sackman argued

that Delphi’s use of valid expert opinion is “scientifically untenable and overstated” [SZ75] and

Delphi responses are likely to be ambitious [Sac74]. In addition, experts are not held accountable

for their opinions even when their views are extreme [Sac74]. The use of a group of experts is

motivated by the principle assumption that group decisions are better than those made by a single

individual [MJH95a]. Delphi’s effectiveness in forecasting [Win97] gives support to that claim. Further,

supporters argue that even in scenarios where extreme expert opinions are present, those with more

extreme views are more likely to drop out of the study leading to consensus [Bar84].

Finally, criticism also exists of the process itself with critics arguing that Delphi falls outside

mainstream methods of scientific questionnaire development [Sac74]. Supporters argues, however,

that the Delphi method is no less methodically rigorous than other qualitative methods such as

interviews [Tur70]. Ultimately, criticisms and support for Delphi reflect biases inherent with the

process. Delphi’s anonymity can be seen as eliminating the adversary process [Sac74] or minimizing

the effects of domineering experts [Mar91]. Delphi’s iterative examination can either be seen as

discouraging exploratory thinking [Sac74] or reaching consensus [MJH95b]. It is the goal of the

researcher to understand what this system affords and removes to identify whether or not the process

is appropriate for their target goals. As there is longstanding support for the process’s effectiveness

in educational planning [WS74], rubric creation through Delphi is well motivated. The section below

highlights several of these educational uses as they pertain to computer science.

2.3.3 Applications of Delphi

The Delphi process is widely used in education research and is beneficial for tackling hard problems

where gathering people in the same place might be difficult, or when in-person situations or lack of

anonymity might cause unwanted difficulties. In an educational application of the Delphi technique,

Weaver (1971a) listed the following areas in which the technique could be used: (a) a method for

studying the process of thinking about the future, (b) a pedagogical tool or teaching tool that

forces people to think about the future in a more complex way than they ordinarily would, and

(c) a planning tool that may aid in probing priorities held by members and constituencies of an

organization (p. 271). For instance, Kloser used a Delphi study to identify practices core to teaching

secondary level science classes [Klo14]. For his study, Kloser created a 3-round Delphi panel of 25

18



experts; 10 high school science teachers and 15 science education researchers from Tier 1 research

universities. In order to ensure a wide variety of teachers and get varying viewpoints, high school

teachers were selected from across the country with no more than two teachers working in the

same state. For the university researchers, it was decided no more than two per university. Expert

qualifications for both parties were determined by national or state honors, level of degree, and

years of experience either teaching high school science, or teaching teachers [Klo14]. After the three

rounds of voting on 10 starter practices and 50 nominated ones, the group came up with 9 teaching

practices for high school teachers that they found to be very important. This also included coming

up with a common language that would satisfy all of the experts, as discourse around certain terms

was high.

One of the earliest uses of the Delphi method as it pertains to computer science is a 1985 study on

the Emerging Computer Science Curricula. The mandate of the 1983 Nation at Risk report required

that one half year of computer science be required of all high school students. The primary question

at the time was: What is computer science? Gomez used a triangulation of grounded theory approach

and the Delphi method to generate three main theories: Theory related to definition, theory related

to curriculum, and theory related to support essentials. From these theories, a detailed description

of computer science, a suggested curriculum, and recommendations for support systems were

derived [Gom85]. It should be mentioned, that Gomez’s work was in attention to Arizona specifically.

Gomez started her research by selecting a panel of 9 experts and constituencies. These included

university professors, professional educators, an aide to a public official, and members of a lay

group (governing board members). She interviewed each member asking them a series of questions

on how they see computer science, what supports might be needed for teachers, and what should

be in the curriculum. From these interviews, she coded each statement into shorter keywords or

phrases. As Glaser recommended, “if all data cannot be coded, the emerging theory does not fully

fit and must be modified" [Gla78]. It was important to her to memo down ideas on how these

codes connected as she was working. After processing the interviews and related literature, she

generated a list of 108 statements pertaining to the three categories: definition, curriculum, and

support. Using the same pool of experts who generated the data set used during coding, Gomez

sent out the initial list of statements for experts to agree upon. Agreement in this case was on a

5-point scale (Strongly Disagree to Strongly Agree). The data were then sent back and forth between

the panelists and the research team as is typical in most Delphi studies. She ended up performing

three rounds of agreement. In each subsequent round she would send the specific panelist back

their result in addition to the overall groups result. The panelist was asked to reassess their own

answer, however, if the answer provided was outside of the interquartile range of the group, they

would be requested to write a short statement supporting their selection. The outcomes of the study

19



were a list of recommendations related to both implementation and research of computer science

education, in addition to a list of different computer science definitions for Business Education,

Mathematics, and Science. Some of the key recommendations are in the computer science support

section, such as: a course on the methods of teaching computer science, a skills requirement that

includes becoming more knowledgeable about the subject matter and the mastery of different

instructional techniques that are more appropriate to higher levels of instruction, and a certification

requirement. As mentioned earlier these types of certifications and requirements are not as prevalent

as one might hope. As of 2011, only South Carolina had a certification requirement for high school

computer science teachers [Wil11].

A newer use of Delphi has been in the recommendations for competencies and learning objec-

tives for a Game Art and Design class in North Carolina [Mac11]. In this four-round Internet-based

study, the Delphi panel consisted of experts from the Independent Game Developers Association

(IGDA) game education special interest group. Members were solicited and those interested re-

sponded to the accompanying demographics survey. The required criteria that determined which

members were chosen as expert panel members included having at least two years of experience

with gaming, and having at least two semesters experience teaching gaming. Thirty three members

were selected, three for the review panel, and thirty for the expert panel. The expert panel was utilized

for creating the list of learning objectives and the review panel was used to maintain consistency

with the instruments and editing. The initial instrument sent out in round one was based on the

nine Core Topics developed by IGDA. Panelists had space to add additional competencies or modify

the wording of the ones provided. Once results were sent back in, the researcher made edits and

sent the instrument to the review panel to approve. This helped eliminate bias that the researcher

might have introduced. Round Two gave experts the option to Accept, Reject, Modify, or Add new

competencies and rate them on a scale of 1 to 5, five being the highest. Competencies and objectives

with a rating of 3.01 or higher were then moved on to round three. Round three involved ranking

the remaining competencies for importance. These results allowed the researcher to correlate the

ratings to the medians from previous rounds and enable the researcher to further observe favored

competencies while identifying consensus if any. The final round was a simple Accept or Reject of

the remaining competencies; no modifications were allowed at this stage.

Goldman et al. used three Delphi study panels of 20, 20, and 21 experts to generate core concepts

for three computing intro courses: discrete math, programming fundamentals, and logic design

[Gol08]. Each study was run in the same manner. In Phase 1, experts were to recommend 10 - 15

core concepts for the topic. These were collated by 2-3 independent researchers who first reconciled

the list by themselves, then together. The summary of results was sent back to the experts for Phase

2 where panelists rated on scale of 1 to 10 the importance, difficulty, and expected mastery of each

20



suggested concept. Again the data were summarized and sent back; this time when panelists went

to rate an item they would have to provide a justification if their vote was outside the interquartile

range of the previous round. Meaning that if their vote was one deviation outside the group average,

they would have to justify their strongly contrasting opinion. Finally, in Phase 4, expert panelists

were given one last chance to rate the suggested concepts. Findings showed that over time the

standard deviation dropped, as expected. A final list of the top 10 concepts for each class was

created. Goldman et al. suggest that readers should take the concepts at face value, as experts

agree these are important things that need to be focused on. However difficulty rating should be

taken with a “grain of salt" as teachers might have different difficulty gauges and have incomplete

understanding of student learning. Goldman suggests future interviews with students to get a wider

view of concept difficulty. Experts might have a blind spot to concepts where students have frequent

misconceptions.

2.4 Discussion on CS Education

Based on the relevant literature we can see that computational thinking, and identifying ways to

support teachers in the computer science classroom are critical to the success of CS Principles, and

the adoption of computer science in general as a standard course offering in K-12 schools. In the

push to get more students into K-12 computing classes, we not only need to develop and evaluate

the courses, but also provide teacher training and support. Most states lack a computer science

certification requirement, and many teachers come in with a minimal background in computing.

From a CSTA meeting held at NC State’s campus we had one teacher say, “I don’t know what the

students are supposed to be learning after teaching this unit (referring to a BJC lab); how am I

supposed to grade it?" For these reasons, this research is conducted to help identify associated

learning objectives using group decision techniques such as the Delphi, and tranlate them in such a

way that novice CS Principles teachers can use them in their classroom.

21



CHAPTER

3

STUDY 1: SYSTEMATIC RUBRIC

DEVELOPMENT FOR CS PRINCIPLES

(Best Paper Nominee) Cateté, V., Snider, E., & Barnes, T. (2016, July). Developing a rubric for a creative cs

principles lab. In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer

Science Education (pp. 290-295). ACM.

Abstract

The “Beauty and Joy of Computing" Computer Science Principles class has inspired many new

teachers to learn to teach creative computing classes in high schools. However, new computer

science teachers feel under-prepared to grade open-ended programming assignments and support

their students’ successful learning. Rubrics have widely been used to help teaching assistants grade

programs, and are a promising way to support new teachers to learn how to grade BJC programs. In

this paper, we adapt general coding criteria from auto-graders to a lab where students write code to

draw a brick wall. We tested the rubric on student assignments and showed that we can achieve

high inter-rater agreement with the refined rubric.

22



3.1 Introduction

Beauty and Joy of Computing (BJC) is a version of Computer Science Principles (CSP), a new Ad-

vanced Placement course, created as an attractive and engaging introduction to computer science

that can be taken in high school for college credit. BJC is a rigorous course that uses open-ended

Snap! programming problems to teach the seven big ideas of CSP: creativity, abstraction, data and

information, algorithms, programming, the internet, and global impact. With funding from the

National Science Foundation, the BJC project has provided professional development for over 140

high school teachers nationwide. Teachers enjoy the course and it is well-received by students from

diverse backgrounds [Pri15], but teachers report that it is difficult to assess student work and provide

students the detailed feedback they need to grow in their computing skills. Most BJC teachers do not

have a computer science background, and therefore have no experience evaluating code, or even in

understanding how the complex, open-ended programming labs relate to the seven big ideas of

the course. Therefore, it is critical that we help new teachers understand how the tasks students

undertake in their labs can be assessed, and how their performance relates to the course’s learning

objectives.

To address this need, we are defining rubrics for BJC labs that teachers can use to grade student

programs. We envision that these rubrics will be usable by new teachers for assessment, and for

providing students with meaningful feedback that links to the course’s important content. This paper

represents the first step in our process - identifying common novice programming grading criteria,

adapting them to a specific BJC lab, testing their application on student programs, and refining

the rubric to obtain good inter-rater reliability. While grading student programs is straightforward

for experienced computer scientists, inexperience with computing and the variety of student code

makes this a difficult task for teachers. Less experienced graders must rely on the stated assignment

objectives, which can be difficult to translate into numeric grades.

We used a three-phased approach to design and evaluate a rubric for the Brick Wall assignment.

In Phase I, we first selected rubric criteria based on literature on automatic support for grading

novice programming assignments, and wrote descriptions for 4 levels of performance for each

criteria to create an initial rubric. Then, two raters applied the initial rubric to grade 9 student

programs independently, and we measured inter-rater reliability. In Phase II, the raters compared

their assessments, and refined the rubric and assessments of the initial 9 samples until they agreed

upon the scores for each of these projects. Finally, the raters tested the robustness of the revised

rubric on 10 additional college assignments, and computed Kappa to measure inter-rater reliability

on the new assignments. We considered a Kappa value of 0.7 or higher to be reliable. In Phase III, we

rated all of the projects to compare the results for students taught by an expert high school computer

23



science (CS) teacher with those taught by novice undergraduates.

This work is important in demonstrating that it is possible to create a rubric based on computer

science education literature, that can be reliably applied by people with no computing background,

to programs that are actually created by novice programmers. Our results show that we can achieve

high inter-rater reliability between a computer scientist and a science educator with no computing

background, on diverse programs created in labs with teaching assistants with no prior programming

experience. These results provide strong evidence that we can adapt a general rubric to help novice

computing teachers evaluate student programs for particular BJC labs. In the remainder of Section

1, we present the Brick Wall assignment. In Section 2, we explain the development of the Brick Wall

rubric. In Section 3, we describe the study methods and phases. In Sections 4 and 5, we present our

results and conclusions.

3.1.1 Brick Wall Assignment

Surveys show that most high school BJC teachers from 2012-2014 used Brick Wall, so we chose it for

rubric development. BJC’s Brick Wall lab was designed to demonstrate abstraction and the value of

creating a function that can be called to perform the same task multiple times, and with different

parameters. The main objective of the Brick Wall lab is to create a brick wall with an alternating

pattern of bricks. In the assignment, two row types A and B are defined, where an A row is made

up of whole bricks, and a B row starts and ends with half-bricks. The assignment specifies that

students should create a new block in Snap! that takes ‘number of rows’ as input and draws a brick

wall that alternates A and B type rows accordingly, as shown in Figure 3.1. Students are instructed to

create one method that generates a brick wall, two separate methods that draw the two row types,

and a method that draws an individual brick. These specific instructions are explained as levels of

abstraction for solving the problem. The visual nature of the task and the clear and simple repetitive

structure of a brick wall are affordances that should help make iteration and functions seem to be

natural solutions to the problem.

Figure 3.1 Levels of abstraction for the Brick Wall assignment

24



3.2 Rubric Creation

To support new teachers to teach computer science, we would ideally build automated systems

that could provide both students and teachers with feedback on student performance. Several

such intelligent tutoring systems (ITS) have been used to teach programming to novice students.

However, the new BJC course strives to inspire new and diverse students to explore computing with

modern tools that can be used to express creativity, such as the Snap! programming language. To

more quickly support teachers with these new environments, we determined it would be helpful

to develop rubrics to help teachers understand the goals of each programming assignment. Our

rubric development was strongly influenced by ITSs for programming, since we wish to make an

objective system that can be used reliably by teachers with different backgrounds to accurately

grade student work. In this section, we describe our process to create a rubric based on computer

science education literature. We draw strongly from the literature in intelligent tutoring, where

researchers have expended great effort to automate the processes needed to evaluate student code.

3.2.1 Rubrics in CS Ed

In education, rubrics are used as performance-based assessment for student projects. Rubrics use

descriptive measures to separate levels of performance on a given task [SL05]. Then, each level of

performance for a particular task is assigned a value. Values in rating scales on rubrics can be either

holistic or analytic [Bro13]. Holistic rubrics are quick and efficient, evaluating projects as a whole.

Analytic rubrics take longer to design, but offer multiple dimensions that are evaluated separately.

Since our goal was to enable teachers to provide more detailed feedback, we chose to design an

analytic rubric.

Rubrics can effectively support teaching assistants, who are non-experts in computer science,

to quickly, accurately, and consistently assess novice student programs for style, functionality, and

design[Bec03]. Researchers tend to agree on three levels of achievement ratings that denote short-

comings, meets expected outcomes, and goes beyond expectations [Bec03; Fit13; Ste14]. Stegeman

separates expected outcomes into two levels - almost there, and meets expectations [Ste14], and we

use this refinement to arrive at four levels. While there is agreement on the levels that programming

rubrics should contain, McCauley highlights that it is important that rubrics have precise and con-

sistent language [McC03]. Toward that end, we chose our rubric criteria from those developed for

automated support for grading, as described in the next section.

25



3.2.2 Criteria Selection

The first step in designing a rubric is to identify a coherent set of criteria for evaluation [Bro13].

When designing our rubric to help teachers evaluate student projects by hand, we wanted to focus

on evidence that would be clearly observable in student programs. Since automated systems rely

upon objective and observable criteria, they are a natural source for our rubric criteria: Accuracy

(correctness), Efficiency (as measured by the number of times blocks are repeated in code), Rea-

soning (domain knowledge), and Readability (style). These criteria were inspired by Pillay, Zeller,

Jackson and Usher as we discuss here.

In 2003, Pillay studied four separate programming tutors and identified four common ways they

evaluate student code [Pil03], including: accuracy or correctness of topic, efficiency of the code,

adherence to style guidelines, and algorithmic domain knowledge. Domain knowledge is comprised

of procedural knowledge on how to write programs and declarative knowledge on how to apply

different programming concepts. Since these were common features, we included all four in our

initial rubric design.

Jackson and Usher’s ASSYST auto-grading system was built to alleviate the errors that people are

prone to make when grading, while still keeping a human tutor involved [JU97]. ASSYST assesses

student code for: correctness, efficiency, style, complexity, and test data adequacy. ASSYST measures

correctness by how well the student program’s output matches the output from a known correct

program. Correctness, in BJC, corresponds to whether the program achieves the stated goal, and

corresponds to the accuracy metric in Pillay’s work and our rubric. ASSYST measures efficiency by

keeping track of how often a particular block of code is executed. This assigns higher efficiency to

a loop which runs a single command 10 times than code for the same task that uses 10 separate

commands each executed once [Hic13]. When scoring code by hand, we estimate this by observing

whether the projects contain identical code that is written more than once. Repetitive commands

in code represent less efficient code, where a loop could have been used instead of copy-paste.

ASSYST’s style metric includes features such as indentation and variable naming. A similar metric

can be found in Pillay’s work, as well as in Zeller’s readability metric, that refers to how easily another

person can read and understand how the project code achieves the goals [Pil03; Zel00]. We combined

these to produce a single Readability criterion for our rubric.

3.2.3 Performance Descriptions

Once we identified the rubric criteria (Accuracy, Efficiency, Reasoning, and Readability), we used the

Brick Wall assignment to write descriptions of observable behaviors for each level of performance

for each criteria. Brookhart’s guidelines suggest that performance level descriptions should be clear,

26



descriptive, and cover the whole range of performance [Bro13]. We started by identifying Level 3 for

meets expectations, as described in the assignment. Level 1 descriptions were basically the opposite

of these. We developed Level 2 descriptions by identifying how students might have just missed

meeting expectations. To develop Level 4 descriptions, we added language about how students

might enhance their programs along the lines of the given criteria. Table 3.1 lists our rubric, with

initial descriptions in plain text and the refinements made to create the final rubric added in italics.

Table 3.1 Final rubric used for initial grading of student projects in Brick Wall assignment. NOTE: item in
italics are additions made to the rubric for clarity.

Category 4 3 2 1
Accuracy
of Content

At least 5-6 rows
of bricks created
with alternating
brick pattern but
all rows same
length

Two rows of brick
created with alter-
nating patterns, or
5-6 inaccurate rows

1 brick created and
repeated

1 brick created

Efficiency Abstracted meth-
ods and loops
used to repeat
coding patterns

A few abstracted
methods were
created, but there is
still a lot of repeated
code

Code works but is
repeated simple
statements (little
abstraction)

Abstraction of
complex meth-
ods not identi-
fiable

Rules and
Reasoning

There is evidence
of the use of math-
ematical and logi-
cal concepts & ap-
propriate use of
abstractions and
algorithms.

There is evidence
of the use of math-
ematical and logi-
cal concepts or ap-
propriate use of ab-
stractions and algo-
rithms.

There is inap-
propriate use of
abstractions and
algorithms.

Little or no
evidence of
the use of
mathematical
and logical
concepts
exists

Readability The source code
has been com-
mented and the
source code is
correct, logical, &
easily readable.

The source code is
correct, logical, and
easily readable.

The source code is
mostly correct, logi-
cal, and readable.

The source
code is unclear,
incorrect, or
incomplete.

27



3.3 Study Design and Methods

Our hypothesis was that we could develop a well-defined, analytic rubric, that raters can use to

achieve an acceptable level of inter-rater reliability (with Kappa at least 0.7). The following sections

describe the context, data selection, and methods for rating and rubric refinement.

3.3.1 Context and Data Sources

Student code samples for rating were drawn randomly from three classes: two high school elective

BJC classes taught by the same teacher in Fall 2013, and one college introductory non-majors

computing course taught in Spring 2014. The high school data was from one high school teacher

teaching two sections of BJC in Fall 2014. Of the original 42 students, one joined the course halfway

through and 2 were missing files, leaving a total of 39 high school submissions. In the Spring 2014

college course with 78 students, 57 files were submitted but 2 were unusable, leaving 55 college

submissions. A total of nineteen projects were randomly chosen for analysis, with nine (three from

each course) for the initial round, and 10 from the college course for the final round. These projects

ranged from completely accurate walls, to one brick telling a joke to a circle.

The two high school classes were taught by an experienced AP Computer Science high school

teacher. The college course had lectures by a Computer Science professor, but the seven lab sections

were facilitated by five undergraduate teaching assistants (UTAs) with no prior experience in teaching

or in BJC. This is similar to the preparation that new BJC high school teachers have, ranging from

inexperienced teachers with no computing background to an expert with 20 years of experience

teaching advanced computer science in high schools. The five UTA majors were: computer science,

civil engineering, materials science, paper science, and textile technology. The UTAs had no prior

teaching experience, and no similar computing course. The course professor led the UTAs through

the lab the week before students did it, in much the same way that high school teachers keep one

step ahead of their students when they teach a new class for the first time. We therefore felt that code

from the college course would be representative of work we might expect from students taught by

an inexperienced high school teacher with no computing background. Therefore, random samples

were chosen from the college course for the evaluation of the final rubric.

3.3.2 Methods

In each phase, two raters worked independently using the rubric to grade each submission, and

we computed Kappa for inter-rater reliability at the end of each phase. Rater1 has a Master’s in

Computer Science, and Rater2 has a PhD in Science Education. In Phase I, both raters rated nine

28



samples from the three courses (three samples from each). To make the selections, we skimmed

the programs and determined that the high school submissions were similar, so we selected three

from each high school course at random. Since we wished to have programs demonstrating diverse

performance levels, we made random selections from the college course but continued to make

selections until we felt we had samples that were fair, good, and very good.

In Phase II, the raters compared their ratings of all nine samples, and when they did not agree,

discussed the ratings, and refined the rubric, as shown in italics in Table 3.1, until they achieved 100

percent agreement on the ratings for the 9 samples. We will elaborate on some of the contentious

coding samples in section 5.2. During this comparison, the raters realized that the quality of sub-

missions from the high school course was higher and less variable. Therefore, the raters selected 10

projects from the college course to test the final, refined rubric for Phase II. As in Phase I, the college

projects were selected randomly but samples were excluded if they were very similar to previously

selected samples.

Finally, in Phase III, we trained a third-year undergraduate computer science major to apply the

final rubric to the Brick Wall assignment. Rater1 and the new undergraduate (UG) Rater3 applied

the final rubric to all 94 Brick Wall assignments, and computed average composite scores for the

high school and college projects to compare the performance between the classes. We hypothesized

that the experienced high school teacher’s students would outperform college students facilitated

by university teaching assistants who were inexperienced at both teaching and CS.

3.4 Results

In Phase I, three projects from each section (6 high school, 3 college) were rated using the initial

rubric. We found very low agreement between our raters, with a Cohen’s Kappa of 0.37. In Phase II,

the raters discussed their ratings and refined the rubric, clarifying the descriptions, until they agreed

on all ratings for all criteria on the 9 samples. The final rubric is shown in Table 3.1 with changes

between initial and final in italics. In Phase II, the raters applied the resulting final rubric to rate 10

additional college coding samples, and achieved a high level of inter-rater agreement, with Kappa

of 0.73. In Phase III, the newly-trained Rater3 achieved a Kappa of 0.735 with Rater1 and Rater 2

on the 19 projects rated in Phases I and II. Rater 1 and Rater3 then rated the remaining 75 projects

and aggregated the rubric scores by high school and college. Results show a clear distinction in

performance in labs between the students taught by novices versus the expert high school computer

science teacher.

High school students taught by the “master" teacher (group 1) averaged 3.60 on the Brick Wall

assignment. College students taught by novice undergraduates (group 2) scored an average of 2.79

29



on the assignment. Figure 3.2 shows the criteria scores for each class with 25 percent error bars,

demonstrating that the high school students taught by a master teacher scored quite highly on

accuracy and efficiency, and similarly to the college students taught by novices in readability. The

largest difference occurs in the reasoning category, where high school students were more likely to

use conditionals and mathematical expressions. This difference could be due to the teachers, but

could also be due to a difference between the self-selection of high school students into a pre-college

course, and students taking a low-level computing course as a general analytic elective in college.

We present these results to show how the potential differences between novice and master BJC

teachers may be impacting student performance in BJC courses.

Figure 3.2 Rubric scores for group 1 and group 2

To illustrate the application of the rubric to student code, we present sample projects that

demonstrate low, medium, or high levels of overall performance, based on standard deviation (SD)

away from the overall average for the 19 scored projects. Students more than one SD below average

were ranked Low, students one SD above were ranked high. The remaining programs were ranked

medium. Of the six high school projects, one was ranked Medium and five were ranked High for

30



demonstrating appropriate abstraction, use of parameters, programming logic and mathematical

reasoning. The 13 college class artifacts were rated with two High, seven Medium, and four Low.

3.4.1 Code Examples

In this section, we showcase one example at each performance level (low, medium, and high). Figure

3.3 shows an example of a low project with the average of all four ratings of 1.75. The Accuracy score

was 3 for creating two rows of bricks with alternating lengths. The Efficiency score was 2, since the

code works but consists of repeated simple statements. The Reasoning score was 1, as there is little

or no evidence of the use of mathematical and logical concepts exists. Finally, the Readability score

was 1, as the source code is unclear, incorrect, or incomplete.

Figure 3.3 Low-level example, scored as: Accuracy = 3, Efficiency = 2, Reasoning = 1, and Readability = 1.

Figure 3.4 demonstrates medium performance, with an average score of 3.0. The Accuracy score

was 4 for having at least 5-6 rows of bricks with alternating lengths. The Efficiency score was 3, since

a few methods were created, but there is still a lot of repeated code. The Reasoning score was 2 since

there is inappropriate use of abstractions and algorithms. Lastly, the Readability scored 3 since the

code is correct, logical, and easily readable.

Figure 3.5 demonstrates high overall performance, with an average score of 3.75. The Accuracy

score was 4 since the program creates at least 5-6 rows of bricks with alternating lengths. The

Efficiency score was 4 for using methods and loops to repeat coding patterns. Reasoning also scored

4 since there is evidence of the use of mathematical and logical concepts and appropriate use of

abstractions and algorithms. Finally, the Readability scores 3 since the source code is correct, logical,

and easily readable.

These three student code examples demonstrate the diverse ways students can complete an

31



Figure 3.4 Medium-level example, scored as: Accuracy = 4, Efficiency = 3, Reasoning = 2, and Readability
= 3. This program shows lack of loops and logic

assignment. The low example uses a simple repeat loop, but only creates two rows. The medium

example, forgoes loops, rather listing each row separately. The medium and high examples both draw

a complete brick wall, but only the high example demonstrates how abstraction and parameters

can be used to draw a brick wall customized to user input.

3.4.2 Rubric Refinement

There were four main areas where we edited the initial rubric to resolve rating differences, three

in accuracy: misaligned row ends, parameter setting, and code needing edits to run properly; and

one in reasoning, with student use of “magic numbers”. The Accuracy criterion relies on matching

the program’s output to the lab assignment’s objectives. The lab assignment was generally detailed

enough for the two raters to consistently score projects for Accuracy, but a few student programs

demonstrated behaviors not accounted for on the rubric. Readability measures how well another

person can read someone’s code. This category was easily measurable by both raters and adjustments

were not required. Efficiency is related to code length - shorter code with blocks that are executed

more often than they appear in the program is more efficient. This difference can be seen between

Figure 3.4 which uses the ‘Up and Turn Left’ and ‘Up and Turn Right’ blocks each five times, versus

32



(a) First half of method to generate wall (even # of rows)

Figure 3.5 High-level example, scored as: Accuracy = 4, Efficiency = 4, Reasoning = 4, and Readability = 3.
Program uses loops & math to generate correct output.

Figure 3.5 which uses each transition block once (it gets repetitively called using a loop). Since this

was a straightforward measure, the raters agreed on scores. The Reasoning criterion describes use

of logic and abstraction - such as having if or while blocks. The main difference in raters on this

was that Rater1 could determine whether mathematical expressions logically matched the program

requirements, or if a student inserted a parameter, we call a “magic number” to adjust program

output to be correct, despite this number having no basis in logic.

The primary confusion between raters typically revolved around different interpretations of

Accuracy. The first difference was in how to score Accuracy for code that correctly draws multiple

rows of bricks but whose ends did not align, as shown in Figure 3.6. Originally, the rubric listed 5-6

rows as a 4 rating and 2 rows as a 3 rating, since we anticipated that some projects would not include

loops to create multiple rows. Rater1 scored rows with alternating lengths with a 3, since they were

not entirely accurate, while Rater2 scored them with a 4 since they had 5-6 rows. Therefore, we

added the words “or 5-6 inaccurate rows" to the Accuracy level 3 description to settle this difference.

A second difference between the raters was in judging Accuracy for programs that had adjustable

33



Figure 3.6 Two brick walls with differing row alignment on the right side.

parameters and inputs. In some student projects, the brick wall would not be drawn exactly right

unless the rater modified a parameter or input before running the code. Rater1 (computer scientist)

scored these higher than Rater2, since it is standard practice in computer science courses to test

code with multiple input values. Rater2 was not familiar with this practice, so rated these projects

as incorrect. Upon discussion, the raters agreed to count programs as correct if parameters could be

easily adjusted to achieve the correct output, but this was not explicitly added to the rubric.

(a) Wall drawn off screen (b) Code shows “magic numbers"

Figure 3.7 Blocks showing student misunderstandings.

The raters discovered that some adjustment of the Snap! interface might be needed to fully

observe some program behaviors. For a few projects, zooming out or re-centering the stage view

made it possible to view the entire wall for evaluation. For a few others, the student had programmed

34



fixed off-screen values for the start and end positions of the wall, relying on the Snap! interface to

cut off the wall edges (see Figure 3.7 a). This did not require adjustment of the rubric, but rather

adjustment in how the raters used Snap! to run programs.

The use of “magic numbers" was the source of confusion for both raters. It was apparent in one

example (Figure 3.7 b) that a student was having difficulty aligning the A and B-type rows and relied

upon formulas or numbers to adjust the placement of bricks. However, these “magic numbers” were

not applied systematically or in a way that appeared to have a logical reason (to either rater). In

these cases, the brick walls looked good but it appeared that students applied a guess and check

strategy to determine numbers to use to make the brick wall look correct. The intention of the

assignment was for the students to discover a general solution to the brick wall problem, not one

that is specific to a particular browser, screen resolution, or idiosyncrasies of student code. In this

case, math and logic are clearly applied (since there are mathematical operators visible in the code),

but, without a clear formula, it was unclear as to whether or not math and logic were being applied

appropriately. This project was also one that had pre-programmed positions for the starting point,

and attempts to center the brick wall on stage were difficult to make. It was resolved that there was

in fact (inappropriate) use of magic numbers, and another field was added to Reasoning level 2

(Table 3.1).

3.5 Conclusions and Future Work

In this study, we created an analytic rubric based on evaluation frameworks that automatically assist

people in grading student programs, applied the rubric to a set of student work, refined the rubric,

and applied it again, demonstrating a dramatic increase in inter-rater reliability. Our rubric rates BJC

Brick Wall programs for accuracy, efficiency, reasoning, and readability. In Phase I, we observed that

Rater2 (science education) initially had more difficulties with the rubric. In Phase II, after discussion

and strategic updates to the rubric, this rater’s scores aligned much more closely with those by

Rater1 (computer scientist). One limitation of the study is that the raters’ discussion likely informed

the scoring of assignments in Phase II, so therefore do not represent the likely scores of novice

teachers upon first application of the rubric. However, to help address this limitation, we have

selected sample student programs that illustrates three levels of proficiency, and will provide these

types of samples in our future studies of rubrics as they are used by novice BJC teachers. We also

believe that teachers will learn, from the application of the rubric to student code, to differentiate

programs according to the rubric criteria, promoting their learning of computer science and their

skill in evaluating student programs. Eventually, we believe teachers can use the rubrics to guide

students to create better programs.

35



Another limitation of this study was that the Brick Wall lab is relatively simple. This may be the

reason that only minor changes were needed to achieve an acceptable rubric. For more complex

assignments, it may not be as straightforward to map the assignment to the rubric criteria. We expect

that the readability and efficiency criteria will not need much refinement, but accuracy criteria may

need to be added for each program objective, and reasoning may also need individual criteria for

each distinct objective.

In future work, we plan to align our rubric with essential knowledge components from the CS

Principles course framework available at apcsprinciples.org. For example, Essential Knowledge

component 4.1.1 D enumerates the learning goals for Mathematics; specifying iteration, loops, and

using the modulus operator. Raters considered similar ideas within the Reasoning category of our

rubric, but we could revise the rubric to be more focused on learning objectives, and this is better

for providing students target learning goals [Bro13]. By expanding the Reasoning section of our

Brick Wall rubric to focus on learning goals and not just task completion, teachers will also be able

to better identify what students should be learning and doing during a particular activity or lab.

36



CHAPTER

4

STUDY 2: TASK VS. LEARNING BASED

RUBRIC EVALUATION

4.1 Introduction

Today Computer Science plays a critical role in nearly every field. There is a growing body of literature

that recognizes the importance of improving K-12 computer science education and including

computational thinking in earlier grades and other subjects [BS11; Tuc03; Win06]. One of the biggest

roadblocks to increasing the pervasiveness of computing classes is the limited number of well

qualified computing teachers available to teach the courses. The CS10K movement is pushing to

create 10,000 new computer science teachers; many of these teachers are converting from other

disciplines like math or business. A primary concern for K-12 CS education researchers is the lack

of preparedness of our new computer science teachers [Ben15; Cun14; Goo14]. These new HS

CS teachers have experience in the K-12 classroom teaching other subjects and understanding

pedagogical theories. Unfortunately, these teachers do not fully understand the concepts behind

computer science and computational thinking; key elements in the new AP Computer Science

Principles (CS Principles) course. As CS Principles is a curriculum framework that comes in multiple

forms, we will narrow our research by focusing on the development of quality support materials for

37



the Beauty and Joy of Computing (BJC) implementation of CS Principles.

Through intensive professional development workshops and in-person interviews, we have

found that many BJC teachers are struggling with assessing student work in the form of programming

lab assignments. These student solutions are written in the Snap! programming language and the

labs are intentionally open-ended to allow for student creativity. Whereas traditional computer

science professors and teaching assistants can recognize computing algorithms and concepts in

students’ code, the BJC teachers have not had nearly as many years in training (most teachers

have only had one or two computing classes while in college). Additionally, as the teachers were

handed a pre-built curriculum, they are not confident in their understanding of what the particular

learning goals are for individual labs or how to evaluate them. In our research, we explore the value

and efficiency of developing performance-based versus learning-based rubrics for the support of

and use by novice computer science teachers in evaluating BJC programming labs as measured by

rater-reliability, ease of use, and student score distributions.

4.2 Background

In K-12 Computer Science Education, it is understood that assessment is needed to evaluate student

learning and computational thinking abilities. However, there is still no general method on how to

develop these assessments reliably and easily. The literature describes several techniques to create

assessments for specific programming languages or development environments [Dan12; Fra13;

Tay14; TG10], but these fail to support assessment evaluations by teachers who are not experts in

computational thinking.

In Koh’s 2010 paper, they use a computational thinking spiral developed for the Scalable Game

Design (SGD) course to analyze what computational thinking patterns are in student code [Koh10].

When analyzing student projects (written using AgentSheets) the SGD researchers look for program

behavior similarity, and also apply latent semantic analysis (LSA) to evaluate student code. The SGD

research team created a Computational Thinking Pattern (CTP) Graph (a star plot with CT’s listed as

the outer vertices) to describe the types of learning evidenced in student code

However, as Koh states, the CTP graph content and structure are somewhat “arbitrary" – because

the CS ed research community has not yet created a set of agreed-upon measures for computational

thinking.. We aim to produce a set of computational thinking learning objectives, based on the CSP

course, through our research. We use a Delphi method, described in Section 4.3, to generate learning

outcomes and code samples for a particular CS Principles lab. A Delphi study is a technique to

obtain the most reliable consensus of opinion of a group of experts using intensive questionnaires

interspersed with controlled opinion feedback [DH63]. The outcome of this research will be a set

38



of rubrics whose content is agreed upon by experts, but whose structure is easy to use for novice

computing teachers.

Rubrics are one of the most common performance-based assessment tools used to evaluate

student projects. Rubrics use descriptive measures to separate levels of performance on a given task

[SL05]. Then, each level of performance for a particular task is assigned a value. Rating scales on

rubrics can be either holistic or analytical [Bro13; Mos03]. Holistic rubrics are quick and efficient;

they rate the project as a whole and do not provide specific feedback on what elements of the project

could be improved. However, these may not be effective in conveying to students how they can

improve, and experts may in fact disagree on these ratings. Analytical rubrics take longer to design,

but offer multiple dimensions for which students can get feedback. When using an analytical rubric

each dimension gets treated separately to avoid bias from the end product.

Rubrics are important to use because each student project is rated individually against the same

criteria. This avoids cases where projects are subject to a graders’ own judgment, which may differ

greatly between graders, instructors, or more specifically BJC teachers [Bos02]. Rubrics help clarify

expectations for students while also speeding up grading. Instructors can also refine their teaching

by evaluating rubric results to see which areas need improvement.

The creation of concept inventories and language specific guidelines are too strict for an open

ended course like CS Principles. Alternatively, I have demonstrated the creation of a performance-

based rubric for a CS Principles lab using grading schemes from the field of intelligent tutoring

systems and program auto-graders [Cat16], which applies more directly to the CS Principles course.

Although the performance-based rubric was used successfully, learning-based rubrics have been

shown to be more objective [JS07]. The main difference in the two rubric types is that the learning-

based rubric is learning goal oriented, while performance-based rubrics evaluate the end product.

In the following sections, we will describe the study methods for generating the improved

learning-based rubric as well as the results of its application to student code samples when compared

with a performance-based rubric. We conclude with discussion of the results and further work to

continue to improve the support available to CS Principles/BJC teachers.

4.3 Summer 2015 Delphi

A traditional Delphi panel calls for 15-24 experts on a subject to generate a consensus on a particular

problem or task. The Delphi method elicits data from expert panelists through 3-5 rounds of surveys

for use in creation of new expertly agreed upon materials. In the summer of 2015, we conducted a

Delphi study on a CS Principles lab, Hangman, in order to create learning goal data for an expert

generated rubric.

39



CS Principles Master Teachers were undergoing professional development for the Beauty and

Joy of Computing (BJC) for one week in summer of 2015. These Master Teachers have all undergone

previous BJC professional development, and were now being trained in advanced pedagogical

techniques and training guidelines for the course. Due to their mixed backgrounds and recent

training in CS Principles/BJC they made for ideal panelists in the Delphi study.

As the Master Teachers were considered BJC content experts and had recently reviewed the

full curriculum as part of their master training, their opinions on applicable learning objectives

and student code would help create objectives for a learning oriented rubric and give a perspective

on expected student [artifact] outcomes. It was hypothesized that the panelists would adequately

align learning objectives to a particular lab; however, their student code samples would differ

from authentic student code, highlighting a gap in computer science programming knowledge and

pedagogical experience.

4.3.1 The Panelists

A total of 9 Master Teachers participated as expert panelists for the Delphi study: six female, three

male. Each participant was a current high school teacher with 1-3 years of past experience teaching

CS Principles. 15% of teachers had 1 year of experience, 57% of teachers had 1-2 years of experience

28% had more than 2 years of experience teaching CS Principles. The primary courses taught by the

panelists were: business management, mathematics, physical science, and computing. Two of the

panelists have advanced degrees in teaching, two have Masters degrees in their subject field, and

one of the teachers is National Board certified.

In order to complete the Delphi study, panelists answered a series of three moderately short

surveys, which were based on the results of the previous survey. The details of each round of surveys

are explained in Section 4.3.3.

4.3.2 Hangman Lab Description

The Hangman Lab is part of the Lists and Higher Order Functions units in the BJC curriculum

[Uni14]. The lab was designed to combine tasks learned in exploring list operations such as ‘map’,

‘keep’, and ‘combine.’ This activity is more advanced than the Brick Wall lab and requires a better

understanding of algorithms. The students start with code they used in creating a word list, with the

description shown in Figure 4.1b. The directions for completing the Hangman activity are in the

text that follows.

Imagine that you’re writing a program to play Hangman. The program has thought of

a secret word, and the user is trying to guess it. Write a display word block that takes

40



two inputs, the secret word and a list of the letters guessed by the user so far. It should

say the letters of the secret word, spaced out, with underscore characters replacing the

letters not yet guessed: (Use your word->list block on the secret word to get started.)

See Figure 4.1a below for an example.

(a) (b)

Figure 4.1 (a) New block to display a secret word ‘Hangman’ style. (b) Beginning structure of a ‘Word-list’
block.

Write a word->list block that takes a word of text as input, and reports a list in which

each item is a single letter from the word. To do this, you’ll have to use a loop, along

with the add to list block (above).

4.3.3 Survey Rounds

Our Delphi study contained four different rounds and focused on the BJC lesson Hangman. We

selected Hangman for this study as it is one of the most widely used activities in the BJC community

and features a more complex programming requirement than the Brick Wall Lab used in Chapter 3

[Cat16]. In the first round of this Delphi study, we asked participants to select all learning objectives

from the AP CS Principles framework [Col14] that they believe apply to the Hangman lesson. We

also asked participants to indicate the top five exemplars out of the objectives that they chose. A

total of 22 learning objectives were chosen overall as relating to the Hangman lesson. Out of these,

17 learning objectives were selected as Top 5 by the participants. The top 18 learning objectives

(80%) with the highest frequency of selection were chosen for inclusion for rating in the second

round of the Delphi study. In the second round, the participants rated each of the included learning

objectives on a scale of 1 to 5 (Strongly Disagree to Strongly Agree) on how much they agreed that the

learning objectives related to the Hangman lesson. For learning objectives that were more general,

41



we also included the Essential Knowledge (EKs) indicators for participants to select. For example,

learning objective 5.3.1 ‘Programming is facilitated by appropriate abstractions’ was broken down

into its more explicit EKs such as ‘Integers and floating-point numbers are used in programs without

requiring understanding of how they are implemented.’ This allowed us to determine which aspects

of the learning objectives participants felt most strongly about. The five learning objectives and six

EKs with a rating of 4.25 or higher were selected to continue to the third round.

The third round of this Delphi study required the participants to generate code samples corre-

lating to the learning objectives remaining from previous rounds. For each learning objective of

their choice, participants wrote pieces of programs that highlighted that concept at high, medium,

and low levels of understanding. All code samples were written in Snap, the programming language

promoted by the BJC course materials. Each teacher submitted two code samples for a total of 18;

however, two were removed due to being corrupted files. The primary learning objectives codified

by our panelists were abstraction and using mathematical reasoning.

Given the three sets of high, medium, and low level programming samples and paired learning

objectives, our team developed a new, learning outcomes based rubric (4.1) to use with the Hangman

assignment. We discuss this rubric and its application by non-experts in the following sections.

4.4 Rubric Evaluation Methods

The learning-based rubric for Hangman references a total of six essential knowledge components and

three learning objectives broken down into five value measures. The rubric uses expected learning

outcomes (essential knowledge and learning objectives) as descriptive categories for grading. These

categories and outcomes were based on feedback results from the Summer 2015 mini-Delphi Study.

A detailed look at the rubric can be seen in Table 4.1.

In order to evaluate the effectiveness of the rubric in supporting consistent and meaningful

grading results, two raters used the rubric in evaluating 103 student coding assignments submitted

for the Hangman lab. In order to maintain more natural results, raters were given limited instructions

on how to grade. Rater 1 was a first year college student majoring in computer science and enrolled

in an introduction to programming course. She took visual basic in high school, but only completed

3 months of her college programming course. For the purpose of this evaluation, the researchers

considered Rater 1 a computer science novice that would be on par with the high school BJC teachers

as most of the BJC teachers had limited experience in computer science training. Rater 2 obtained a

Master’s degree in computer science and taught a middle school computing club for over seven years.

The research team considered Rater 2 a computer science expert during this evaluation process.

The 103 Hangman programs were collected from the 2014-2015 school year; 41 of them from a

42



Table 4.1 Hangman Rubric developed from Learning Objectives and Essential Knowledge selected by
Delphi panelists.

Learning Outcomes 4 3 2 1
LO 4.1.2 Express
an algorithm in a
language.LO 4.4.1 De-
velop an algorithm
for implementation
in a program.

Code cleanly orga-
nized and laid out to
be read easily. Abstr.
blocks are properly
composed.

Much of the code is
cleanly organized
with certain parts
disjointed/apart.

Half of the code is
cleanly organized
with the other half
disjointed and
separated.

Majority of code is
broken apart and
hard to follow by the
reader.

EK 2.2.1B An abstrac-
tion extracts com-
mon features from
specific examples
in order to gener-
alize concepts.EK
5.3.1A Procedures are
reusable program-
ming abstractions.

Code properly sep-
arated into deeper
functions and ab-
stractions. Different
abstractions for each
process: Word-List
Display Word (etc.)

Majority of code is
separated into differ-
ent levels of abstrac-
tion with few func-
tions not divided into
new blocks for func-
tionality.

Some of the code
is abstracted prop-
erly, using different
functions and code
blocks to perform
basic actions. Few
functions are left non
abstracted.

Little of the code is
properly abstracted
with the majority
of functions left
together.

EK 5.3.1F Parameters
generalize a solution
by allowing a proce-
dure to be used in-
stead of duplicated
code.EK 5.3.1L Using
lists and procedures
as abstractions in pro-
gramming can result
in programs that are
easier to develop and
maintain.

Code blocks and ab-
stract functions use
list operators & pa-
rameters to increase
program efficiency.

Majority of abstrac-
tions utilize parame-
ters to be used for
testing, some list op-
erators are used for ef-
ficiency.

Some functions and
abstractions utilize
parameters and list
operators are not
used efficiently

Few abstractions uti-
lize parameters.

LO 5.4.1 Evaluate
the correctness of a
program.EK 5.4.1C
Meaningful names
for variables and pro-
cedures help people
better understand
programs.

Naming of functions,
including abstrac-
tions, accurately
represents the prob-
lem being solved
program is easy to
read; program works.

Some functions
named properly,
others provide no
meaning. program
can be understood
after a few read
throughs, and mostly
works

EK 5.5.1D Mathe-
matical expressions
using arithmetic
operators are part of
most programming
languages.

Code uses math and
logic (loops, mod,
etc.) to automatically
monitor when the
code begins, ends,
and how it processes.

Majority of code uses
mathematics to mon-
itor and keep track of
how it runs.

Some mathematics is
used to automate the
functions but there
are uses of numer-
ous manual function
calls that could be re-
placed with logic to
automate it.

Little or incorrect
math is used to au-
tomate the program
process and the
program relies on
manual function
block calls.

43



high school CS Principles Honors class taught by a seasoned computer science teacher (15+ years

teaching high school computer programming) and the remaining 62 from a college level introductory

programming course. The college course was taught by a tenured computer science professor and

labs were conducted by undergraduate teaching assistants trained by the professor (considered

to have a similar subject level expertise as new high school BJC teachers). For the purposes of this

study Honors CS Principles is categorized as the group 1 and the college course as group 2.

Furthermore to test whether or not the learning-based rubric is an improvement over the

traditional performance-based rubric, the raters completed grading for both the learning-based

rubric in Table 4.1, and a simpler performance-based rubric in Table 4.2. The performance-based

rubric was created by a member of the research team following the same ITS schema as the Brick

Wall performance-based rubric described in Chapter 3 [Cat16]. Each rater graded the full set of 103

Hangman programs using the performance-based rubric. Raters were instructed to leave comments

on the grading sheet whenever a particular program raised questions as to what grade value should

be given. An example comment might be “Student A completed the task incorrectly, but utilized all

of the desired list functions. Student A was given partial credit." The evaluations of projects using

these two rubrics were compared via range of end scores, inter-rater reliability for each rubric, and

rater commentary and a debriefing interview for ease of rubric application. We were interested in

seeing if individual student scores differed across rubrics. We hypothesized that the richer analysis

provided by the learning-based rubric would lead to either lower or more varied scores compared

to the performance-based rubric.

4.5 Results

4.5.1 Performance-Based Rubric Results

The raters graded programs separately, but were given similar instructions on how to use the rubric.

Projects were graded on a 1-4 point scale, with 4 being the highest value. A composite score was

given to each project by calculating the graded average for that particular project. When scored with

a performance-based rubric, projects ranged from 1.87 to 4.0, all projects together averaged a score

of 3.25. When broken down by course, projects submitted in group 2 averaged a composite score of

M=2.99 SD=.99, and projects submitted in group 1 averaged M=3.55 SD=.93. These results can be

seen in Figure 4.2.

Interestingly, when broken down by rubric category the two groups differed significantly in all

but one category, readability. In all other categories, scores were significantly different, as seen in

Table 4.3. The development of the learning-based rubric was motivated by the ability to further

44



Table 4.2 Hangman Rubric developed from performance-based rubric criteria in work by Cateté.

Category 4 3 2 1
Accuracy The hangman game

works properly (un-
derscores where
there are no letters,
keeping track of
the incorrect letters,
generates a word
every time, allows
the right amount of
turns, etc)

The hangman game
mostly works and
has all of the re-
quired components.

The hangman game
does not work prop-
erly but has most of
the required compo-
nents.

The game does not
work, and does not
have a sufficient
amount of the re-
quired components.

Efficiency Uses lists and loops
properly with very lit-
tle repeated code.

Uses lists and loops,
but still has some re-
peated code.

Uses lists and loops,
but there is too much
repeated code.

Does not use lists
and loops.

Rules and
List Oper-
ators

There is evidence of
the use of logical con-
cepts and appropri-
ate use of abstrac-
tions and algorithms.

There is evidence of
logical concepts or
appropriate use of
abstractions and al-
gorithms.

there is inappropri-
ate use of abstrac-
tions and algorithms.

Little or no evidence
of the use of math-
ematical and logical
concepts exists

Readability The source code has
been commented
and is correct, log-
ical, and easily
readable.

Source code is cor-
rect, logical, and eas-
ily readable.

The source code is
mostly correct, logi-
cal, and readable.

The source code is
unclear, incorrect,
messy, or incom-
plete.

expand the reasoning category.

4.5.2 Learning-Based Rubric Results

After the use of the learning rubric to grade Hangman assignments, rater agreement was measured

at 87.9%. When accounting for agreement by chance, inter-rater reliability measured as Cohen’s

kappa was satisfied at 74.8%. Similar to the performance-based analysis, a composite score was

given to each project by calculating the graded average on the rubric categories for that particular

project. When scored with a learning-based rubric, all projects together averaged a score of 3.57.

When broken down by course, projects submitted in group 2 averaged a composite score of M=3.45

SD=0.82, and projects submitted in group 1 averaged M=3.69 SD=0.86. Data were also analyzed on

an objective-by-objective basis for each class. Learning objectives related to the Hangman activity

were categorized into five sections, four of which contained more than one knowledge description.

For example, LO 4.4.1 Develop an algorithm for implementation in a program and LO 4.1.2 Express

an algorithm in a language were combined into the algorithm assessment portion of the rubric.

45



Figure 4.2 This figure compares projects evaluated by a performance-based rubric between group 1 and
group 2.

Figure 4.3 shows the comparison of each learning objective and how well the students reportedly

achieved it. In the algorithms category (Develop and express an algorithm) students scored 3.62/4.

In the use of abstraction category (extracting common features to make reusable programming),

students scored a mean of 3.65/4 informing us that students have a strong understanding of what

abstraction is and how to implement it. The next category covers the use of parameters and list oper-

ators in the students’ projects. As learning list operators and functions surround this lab activity, it is

important that students can apply the knowledge they have been hopefully learning. Projects scored

3.37/4 on list operators. The naming and correctness category averaged 3.36/4 on student projects.

The mathematical category is more broadly written to incorporate the different logical pathways

created by students, as there are many ways to implement mathematical and logic expressions to

solve a problem; projects averaged 3.61/4 on this.

We will discuss these results, and possible interpretations of them in Section 4.6.

46



Table 4.3 Descriptive statistics for a comparison of means test on Group 1 vs. Group 2. (In each category
Group 1 is the top line.)

Category Sample size Mean Standard Deviation Variance p-level

Accuracy
40 3.788 0.338 0.114

<.001
60 3.183 0.617 0.381

Efficiency
40 3.638 0.408 0.167

<.001
60 3.242 0.634 0.402

Reasoning
40 3.725 0.452 0.204

<.001
60 2.958 0.777 0.604

Readability
40 3.050 0.464 0.215

0.116
60 2.875 0.587 0.344

4.5.3 Between Rubrics

One aspect we wanted to look into was project evaluation between rubrics. We are interested in

whether or not projects that score highly on the performance-based rubric also score high on the

learning-based rubric. For this analysis we show the grade difference between average project scores

on each rubric. The standard difference between grades is 0.6 points. When broken down into the

separate categories on each rubric, with learning-based categories denoted as L and performance-

based categories denoted as T, the categories with the best scores (on average) are Abstraction (L),

Algorithms Composition (L), and Mathematics (Use of list/parameters) (L). The lowest scores occur

(on average) in categories Readability (T), Reasoning (T), and Correctness/Readability (L). In Figure

4.4 we can see the correlation between grades of each student. The learning rubric based grades are

on the X-axis, and performance-based on the Y-axis. It can be seen from Figure 4.4, that the student

grades are not well correlated between rubrics, R 2 = 0.03.

4.6 Discussion

This study set out to evaluate the effectiveness of a new learning-based rubric developed by an

expert Delphi panel. It was hypothesized that the new rubric would have strong inter-rater reliability

and ease of use. We also surmised that the learning rubric would highlight aspects of the students

learning that are either flawed or missing, resulting in lower scores on average. In this section, we

will take a look at the results and discuss how they either support or contradict our hypotheses.

47



Figure 4.3 This figure compares projects evaluated by a learning-based rubric between group 1 and group
2.

4.6.1 Reliability

The first question in this study sought to determine if the learning-based rubric could be used reliably

by both master and novice teachers. Given our two raters, the agreement level was a remarkable

88%. When accounting for the probability that our raters would agree by chance, the inter-rater

reliability held strong, with Cohen’s Kappa at 75%. What is even more surprising is that the raters

did not display sufficient agreement on the performance-based rubric, scoring well below what is

considered acceptable (Kappa <20%). A possible explanation for these results might be that the

learning-based rubric had a written description or target goal in each category. When interviewed

on her thought process while grading using the performance-based rubric, Rater 1 remarked, “It was

kind of hard to tell whether a project was one grade or another, the descriptions seemed too close

together in some categories." Rater 1 also stated, "I tried to give similar projects the same grades,

but sometimes it was hard to remember what score I had given something because it was on the

borderline." Without giving a clear standard, the rater had trouble knowing where the cutoff line was

between performance-based rubric ratings. With the added goal descriptions in the learning-based

48



(a) Group 1 grade correlation (b) Group 2 grade correlation

Figure 4.4 Student score correlations across rubrics

rubric, we believe the raters were better able to gauge where the cutoffs were, leading to a higher

level of consistency and inter-rater reliability.

4.6.2 Ease of use

In this section, we discuss our findings on the rater experience while grading these programs. During

Rater 1’s interview, we inquired about her thought process while grading the performance-based

rubric, and what made it so different from the learning-based rubric. When grading assignments on

the performance-based rubric, first impressions went a long way for Rater 1. If the program area

looked messy or it was not immediately clear where to start, Rater 1 automatically docked a point

from the accuracy category. Additionally, if the program did not run correctly, meaning Accuracy

did not score a 4, the rater was less inclined to give any other 4s. Rater 2 on the other-hand, would

run the program first to see if it worked, then read through the whole program trying to figure out

what was going on. Rater 2 also said that she gave the benefit of the doubt when grading future

categories; one category was not dependent on another. Both raters agreed that programs that

used the broadcast system instead of calling another function properly were given lower readability

scores. Since we are developing rubrics for non-expert use, it is important that we discovered that a

rubric that is typical for computer scientists to use leads to fuzzy categorizations on the part of the

novice rater (Rater 1).

As explained earlier, the raters agreed much more frequently when using the learning-based

49



rubric. Rater 2 said that because the quality modifiers were consistent across categories, maintaining

consistency in student grades was much easier. Rater 1 had a similar sentiment when she said that

the learning categories had scores that were more definable. Additionally, as was briefly mentioned

earlier, Rater 1 decoupled each category of the learning-based rubric. We believe this is due to the

presence of separate learning goals. Rater 1 is more like a novice teacher, so higher reliability on the

learning based rubric suggests that new CS teachers will be more likely to grade programs similarly

to an expert in CS. For rater ease, raters found the learning-based rubric both easier to interpret and

that it also allowed for more consistency between similar projects.

4.6.3 Score distribution

The third question in this research investigated how individual student grades compared across

rubrics. We hypothesized that the more detailed focus on learning concepts would lead to highlight-

ing lower student understanding of difficult concepts through lower or more varied grades. Contrary

to our expectations, projects received lower grades more frequently on the performance-based

rubric. Furthermore, grading with a performance-based rubric led to a normal distribution, whereas

the learning-based rubric resulted in a left skewed curve. Despite the overall grade changes across

rubrics, we also found that when separated into classes, there was no significant differences in

performance when using the learning-based rubric. This is very interesting as the learning-based

rubric is an expansion of the reasoning category on the performance-based category, which had

most significant difference in student performance. This unexpected outcome could be due to

the fact that the raters had low agreement on scores for the performance-based rubric. The dis-

agreement could have offset the overall average for each category. Future analysis is needed to

determine which aspect of the performance-based rubric caused the most discrepancies. Another

explanation for this result is that the categories themselves focus more on what the students should

have learned instead of the aesthetics of the programming artifacts. Whereas HS honors students

might care more about the ’perfectionist’ quality of their coding assignments, college students in an

introductory non-majors computing class might put in only as much effort as needed. This would

result in projects that look drastically different, but have the same functionality overall.

Note that we do not find the left-skewed distribution of scores on the learning-based rubric to be

a disappointing outcome. On the contrary, the labs were designed to encourage complete novices to

implement new computer science and computational thinking concepts without a strict focus on

efficiency or typical measures of success in computing. We therefore find that this scoring may in

fact be more encouraging for novice students, and enable them to see themselves as being capable of

producing successful programs. This should in turn encourage students to further explore computer

50



science, rather than deterring them when their first attempts at code were not optimal from a

computer science perspective. We will, however, continue to explore rubric usage and its impact

on teacher understanding of learning objectives, and the impact of rubrics on student learning,

particularly when the rubrics are shared with the students before the labs are due.

4.7 Conclusions

An initial objective of the project was to further explore the learning outcomes achieved by students

when completing programming labs in the CS Principles/BJC course. In order to examine evidence

of learning more closely, we selected a lab that was used frequently by BJC teachers, Hangman. We

then created a learning-based rubric for the Hangman assignment that is closely aligned with the

desired learning objectives and essential knowledge outlined in the CS Principles Course Framework.

To create the rubric, we performed a Delphi study with a panel of BJC Master Teachers. The study

resulted in a learning rubric with nine learning outcomes, as voted on by the expert panelists,

organized into five different categories.

We then evaluated the learning-based rubric in comparison with a performance-based rubric

created by the junior research team using ITS strategies outlined in Chapter 3. Both rubrics were

applied in grading 103 student artifacts, 41 from a HS CS Principles Honors course, and 62 from a

college level intro to computing course. In order to reflect the variance of typical BJC teacher back-

ground knowledge in computing, we selected both a novice and expert grader to do the assessments.

The results of this investigation show that using a performance-based vs learning-based rubric

have varying effects on determining student project quality. Using the performance-based rubric led

to not only inconsistent results between graders, but also a significant difference in the performance

level of the student projects–one that might discourage novice learners. On average, the projects

submitted by the group 1 performed significantly better in every category of the performance-based

rubric except for readability, which showed no significant difference between groups. When using

the learning-based rubric on the other-hand, graders had a very high level of agreement on student

outcomes. Contrary to expectations given by the performance-based rubric, there was no significant

difference in learning outcome grades between the two classes. This is surprising because the

Reasoning category, which evaluates application of computational thinking on the performance-

based rubric, has the largest gap between performance. The learning-based rubric is an expansion

of and more refined implementation of the Reasoning category; we expected to see significant

differences in at least one of the measured learning outcomes. We believe our expectations were

colored by the fact that we are computer scientists, and more highly value code that is aesthetically

more pleasing, and is computationally more efficient– and these values were strongly reflected in

51



the performance-based rubric. However, it may be unrealistic to expect students to achieve elegance

when first learning computer science. A learning-objectives based rubric may more fairly reward

novice students for learning of individual concepts.

Although at first glance, the difference in student performance scores between the two rubrics

may call into question the validity of the learning-based rubric or the use of a novice grader - since

the code artifacts were the same, but evaluated with different rubrics, isn’t one correct and the other

incorrect? We argue instead that the BJC labs are designed specifically to have a low threshold and a

high ceiling - meaning that most students can do them, but that advanced students can still learn

a lot from them. This means that by simply achieving the list of lab requirements, a student has

demonstrated the intended level of competency for the AP CS Principles course. This explains the

difference in rubrics. The performance-based rubric, developed to mirror a traditional grading

scheme used in computer science, is biased towards giving more credit for more elegant, efficient

solutions, which are not appropriate measures of success for novices. In AP CS Principles, it is more

appropriate to award students full credit for meeting the course learning objectives, rather than

penalizing students for not being more advanced to start with. We argue that measuring student

programs based on whether students have met the intended learning objectives is a more objective

goal that promotes equity in assessment.

Learning computer science is a complex domain where multiple learning objectives are often

composed together, causing high cognitive load for novices. Removing bias from our rubrics and

assessments might not just be needed for novice high school teachers, but for all of us, in order to

make our courses more equitable and objective.

52



CHAPTER

5

STUDY 3: DELPHI METHODS IN CS

PRINCIPLES RUBRIC CREATION

(Best Paper Nominee) Cateté, V., & Barnes, T. (2017, June). Application of the Delphi Method in Com-

puter Science Principles Rubric Creation. In Proceedings of the 2017 ACM Conference on Innovation

and Technology in Computer Science Education (pp. 164-169). ACM.

Abstract

Growing public demand for computer science (CS) education in K-12 schools requires an increase

in well-qualified and well-supported computing teachers. To alleviate the lack of K-12 computing

teachers, CS education researchers have focused on hosting professional development workshops to

prepare in-service teachers from other disciplines to teach introductory level computing courses. In

addition to the curriculum knowledge and pedagogical content knowledge taught in the professional

development workshops, these new teachers need support in computer science subject matter

knowledge throughout the school year. In particular, these new teachers find it difficult to grade

programs and labs. This research study uses two variations of the Delphi Method to create learning-

oriented rubrics for Computer Science Principles teachers using the Beauty and Joy of Computing

53



curriculum. To perform this study we implemented (1) a heavy-weight, heterogeneous wide-net

Delphi, and (2) a lower-weight, homogeneous Delphi composed of master teachers. These methods

resulted in the creation of two systematically- and rigorously-created rubrics that produce consistent

grading and very similar inter-rater reliabilities.

5.1 Introduction

This paper presents two variations of the Delphi Method used to develop well-defined, learning-

oriented rubrics for programming labs taught by novice Computer Science Principles teachers using

curriculum from the Beauty and Joy of Computing (BJC) [Uni15].

First, we give a brief overview of the current state of teacher preparation for Advanced Placement

Computer Science Principles (AP CS Principles), followed by examples of rubric development for

introductory computer science. We then describe the Delphi process or Delphi method, adapted

from psychology, and its use in decision making. After a brief review of the Delphi process, we

describe our application and evaluation of the Delphi in creating two separate well-defined rubrics.

Finally, we compare the two Delphi process variations using inter-rater reliability, score distributions,

and an overall cost-benefit analysis. We end our paper by discussing the merits of this methodology,

and how to streamline the process for expanded use.

5.2 Background

As public demand for computer science in K-12 classrooms continues to grow, there is a large

shortcoming in the number of well-qualified Computer Science Education teachers. In the United

States, few colleges offer teacher education directly in Computer Science. Many education depart-

ments offer Technology Education, however, this track often pertains to the use of technology in the

classroom and engineering practices, rather than computational thinking and computing.

5.2.1 U.S. K-12 Computing Teachers

With the lack of infrastructure to quickly prepare new teachers directly for K-12 computing, re-

searchers and universities are holding professional development (PD) seminars and training to

convert existing K-12 teachers into computing teachers [Bar16; Eri14; Goo14]. Attendees for this

type of PD have diverse subject backgrounds ranging from Business to English and Language Arts

[Eri14; Pri16]. In order to be successful in teaching a course, Shulman suggests that teachers should

have subject matter knowledge, curricular knowledge, and pedagogical content knowledge (PCK)

54



[Shu86]. Teachers in the CS oriented PD sessions are being trained in curricular knowledge and

pedagogical content strategies [Eri14; Pri16]. This support is a brief introduction and does not turn

the novice computing teachers into content experts.

A 2016 study focused directly on measuring the computer science PCK of active K-12 computing

teachers [Yad16]. The study showed that teachers felt confident in transmitting the associated

computer science knowledge and understandings, however, teachers demonstrated difficulty in

addressing student problems relating to programming errors. This difficulty understanding and

debugging student code directly relates to the teachers’ lack in expert content knowledge.

A lack of content knowledge leaves teachers unprepared to understand and identify compu-

tational thinking in code [Pri16], unprepared to assist students with programming errors [Yad16],

and unprepared to create instructional rubrics for students to learn programming assignment

requirements [Eri14].

5.2.2 Computational Thinking Rubrics

A summative review by Stegeman highlights that while many introductory CS rubrics focus on similar

aspects of code quality, they are very diverse in form as well as content [Ste16; Cat16]. Stegeman

instead calls for a systematic approach to creating instructional rubrics that act as teaching tools to

help students understand the requirements for an assignment to be successful. The instructional

rubrics go beyond a summative scoring mechanism to also list verbal descriptions of the specific

desired outcomes.

From the previously mentioned evidence, we believe that novice computing teachers need

support in understanding and assessing student code through the use of learning-oriented rubrics.

In order to systematically create these rubrics, we borrow the Delphi method from psychology and

education.

5.2.3 Delphi Process

The Delphi process is a technique originating in the 1950s to obtain the most reliable consensus of

opinion from a group of experts using intensive questionnaires interspersed with controlled-opinion

feedback [DH63]. As emphasized by Adler, expertise is tied to having knowledge and practical

engagement with issues under investigation [AZ96]. As Delphi studies do not normally rely on

random samples, these studies represent the best thinking and opinions of a group of people chosen

for their special knowledge and experience [AZ96; Lec84].

The Classical Delphi is characterized by four pillars: anonymity of participants, iteration for

participants to refine their views, controlled feedback informing participants of other perspectives,

55



and statistical aggregation of the group response to allow for quantitative analysis and interpretation

of data [RW99]. As part of the Delphi Process, panelists complete a series of questionnaires which

are analyzed and processed, with the results integrated into the next stage of survey rounds; Figure

5.1 outlines this process.

Figure 5.1 A simplified version of the Delphi Process.

As outlined by Skulmoski, the typical Delphi method can vary greatly in number of participants,

with the number of rounds usually three or four [Sku07]. As the number of rounds increases, so does

participant drop off rate.

5.3 Methods

In order to move towards well-defined learning rubrics with a structured foundation, we consulted

expert panelists through the implementation of a modified Delphi process. Throughout 2015, we

carried out two separate Delphi studies; the first (StudyA) was a national poll with a heterogeneous

sample of CS Principle stakeholders, the second (StudyB) was local to a professional development

session with CS Principles Master Teachers (those who have taught 2+ years of CS Principles).

The subsections below describe how we systematically used the Delphi Process to solicit expert-

chosen learning outcomes from the CS Principles Framework and applied them in the creation of

learning-oriented rubrics for two popular BJC lab assignments. The final subsection 5.3.5, presents

further details on how we evaluated the rubrics.

56



5.3.1 Lab Assignment Descriptions

Surveys show that most high school BJC teachers from 2012-2015 used the Brick Wall and Hangman

Lab assignments in their classrooms, making these labs ideal candidates for our study.

BJC’s Brick Wall lab was designed to demonstrate abstraction and the value of creating a function

that can be called to perform the same task multiple times, and with different parameters. The

main objective of the Brick Wall lab is to create a brick wall with an alternating pattern of bricks.

In the assignment, two row types A and B are defined, where an A row is made up of whole bricks,

and a B row starts and ends with half-bricks. Students are instructed to create one method that

generates a brick wall, two separate methods that draw the two row types, and a method that draws

an individual brick. These specific instructions are explained as levels of abstraction for solving the

problem. The visual nature of the task and the clear and simple repetitive structure of a brick wall

are affordances that should help make iteration and functions natural solutions to the problem.

Figure 5.2 Levels of abstraction for the Brick Wall assignment

The Hangman Lab is part of the Lists and Higher Order Functions units in the BJC curriculum

[Uni14]. The lab was designed to combine tasks learned in exploring list operations such as ‘map’,

‘keep’, and ‘combine.’ This activity is more advanced than the Brick Wall lab and requires a better

understanding of algorithms. The directions for completing the Hangman activity are below.

Imagine that you’re writing a program to play Hangman. The program has thought of

a secret word, and the user is trying to guess it. Write a display word block that takes

two inputs, the secret word and a list of the letters guessed by the user so far. It should

say the letters of the secret word, spaced out, with underscore characters replacing the

letters not yet guessed. See Figure 5.3 below for an example.

Figure 5.3 Block displays a secret word ‘Hangman’ style.

57



5.3.2 Panelists

In order to develop a rubric with well-determined learning objectives in StudyA, we recruited

a heterogeneous sample of 8 university Computer Science professors as well as 10 high school

computing teachers through the SIGCSE mailing list. Participants were equally split 9 female and 9

male. Five participants indicated that they were involved in the development of either BJC or CS

Principles and 9 participants had taught at least one year of CS Principles in their college or high

school. These participants were considered expert panelists through their many years of teaching

and researching computer science.

StudyB was comprised of 9 Master Teachers taking professional development to learn how

to train new BJC teachers. Each participant was a current high school teacher with 2+ years of

past experience teaching CS Principles; six female, three male. The primary courses taught by the

panelists were: business management, mathematics, physical science, and computing. Two of the

panelists have advanced degrees in teaching, two have Masters degrees in their subject field, and

one of the teachers is National Board certified. Table 5.1 shows a summation of the Delphi metrics.

Table 5.1 Summary of metrics used in Delphi Process implementation.

Delphi Process # of Participants Gender Background Study Rounds

StudyA: BrickWall 18 SIGCSE members
9 Female,
9 Male

4 Tenured Professors
2 Associate Professors
10 High School Teachers
2 Others

1 - Select and rank
2 - Rate agreement
3 - Importance and code samples

StudyB: Hangman 9 BJC Master Teachers
6 Female,
3 Male

All 2+ years teaching BJC
1 - Select and rank
2 - Rate agreement
3 - Importance and code samples

5.3.3 Survey Rounds

StudyA and StudyB followed a similar implementation of the Delphi Process when it came to study

rounds. We implemented a three round survey requesting expert panelists to indicate which learning

objectives from the CS Principles Framework [Col14] best applied to the given lab.

In Round 1, panelists were given a questionnaire containing each of the learning objectives

related to Creativity, Abstraction, Algorithms and Programming listed in the AP CS Principles Frame-

work. Data and Information, the Internet, and Global Impact learning objectives were not included

due to their indirect relation with the selected programming labs. Panelists were instructed to select

as many objectives as they thought applied to the particular lab, and were additionally required to

58



indicate their top five choices for most relevant learning objectives. Once the surveys were com-

pleted, the research team compiled the lists keeping the top 80% of learning objectives indicated by

frequency and any lesson objective that made a panelist’s top five. The research team analyzed the

survey results and proceeded to Round 2.

The Round 2 survey focused on rating the aforementioned highest ranked learning objectives.

The survey was composed of Likert-based questions where each panelist had to rate how strongly

they agreed that a particular learning objective pertained to the given lab assignment. The objectives

were rated on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree). Panelists then had the opportunity

to indicate which Essential Knowledge components, discrete learning statements that make up

each larger learning objective, were most relevant. Indicating essential knowledge components

was important for broader learning objectives that had up to ten different sub-goals. The research

team analyzed the results, carrying forward learning objectives and associated essential knowledge

components rated 4.25 or above.

In the Round 3 survey, panelists were shown each objective rated 4.25 or above and given the

option to contest any learning objectives they saw unfit. The uncontested learning objectives and

associated essential knowledge components were thereby chosen by consensus from a panel of

experts as being the most representative of the learning goals and objectives afforded by the given

lab assignment.

The Delphi Process carried out by the research team differed from the Classical Delphi in that

in the second half of Round 3, panelists were requested to submit their own demonstrations of

the learning objectives in mock student coding samples. Panelists selected up to three learning

objectives or related essential knowledge components and created a high, medium, and low level

demonstration of that skill. Code samples could be submitted via Snap! source code [Uni17], pro-

gram screenshot images, or text explanations with varying degrees of student understanding and

misconceptions. Additionally, panelists were given sample student programs and asked to select

the top three learning goals demonstrated by that sample and explain why the code demonstrates

those goals in short response form. The second half of Round 3 served to bridge the gap between

computational thinking learning objectives applied to writing vs. to code.

5.3.4 Delphi Application

StudyA resulted in the selection of five learning objectives and eight essential knowledge components

pertaining to the BJC Brick Wall lab assignment. StudyB resulted in the selection of five learning

objectives and six essential knowledge components pertaining to the BJC Hangman lab. Each set of

learning goals were then grouped by topic and split into five distinct rubric categories with one to

59



Table 5.2 Sample Parameters category on learning-based rubric for Hangman lab.

EK 5.3.1F Parameters generalize a solution by allowing a procedure to be used instead of
duplicate code. EK 5.3.1D Procedures have names and may have parameters and return values.
4 3 2 1 0
Code blocks and abstract
functions use parameters
to increase usability and
are easily changeable for
testing.

Majority of abstrac-
tions utilize param-
eters to be used for
testing.

Some functions and
abstractions utilize
parameters to allow
greater functionality.

Few abstrac-
tions utilize
parameters.

Abstractions
do not utilize
parameters.

two associated learning goals. Each category was given a simple name as well as the learning-based

descriptions associated with them. See Table 5.2 for an example.

The coding samples generated by the Delphi panelists were also paired with the rigorously

developed rubrics to show novice BJC teachers the relation of written learning objectives to the

learning objectives as seen in code. A sample of this pairing is as follows: given Figure 5.4, a panelist

has selected EK 5.5.1A Numbers and Numerical concepts are fundamental to programming as third in

level of importance for relating to the code sample. Furthermore, the panelist explains, “The student

has created algebraic expressions that generalize numerical concepts necessary to the problem’s

solution. S/he has clearly demonstrated knowledge of the concept."

Figure 5.4 A portion of the code sample critiqued by Delphi Panelists in Round 3.

60



5.3.5 Rubric Evaluation

We tested the newly created rubrics with three university computing majors and two BJC Master

Teachers. Participants were given from 60 to 103 coding samples and asked to grade each one using

the same criteria.

5.3.5.1 Participants

The university student graders were comprised of one graduate student, one sophomore, and one

freshman all majoring in computer science. The graduate student was selected for their expert

content knowledge in computing, representing the ideally experienced CS teacher. The sophomore

was a less experienced computing major and demonstrated modest programming knowledge. The

freshman had taken an introductory programming course in high school, but had not completed

the first level computing class in university representing the novice CS Principles teacher.

The two BJC Master teachers were selected based on their past performance in professional

development training as well as their willingness and eagerness to improve support materials for

BJC. One teacher had successfully taught two sessions of BJC in their local high school, the other

had taken the professional development course several summers in a row and now leads their own

training sessions. The second master teacher, in addition to teaching at their local high school, was

also enrolled in distance education computing courses to strengthen their content knowledge.

5.3.5.2 Data Corpus

We collected 103 Hangman programs and 94 Brick Wall programs from three BJC implementations

in the 2013-2014 school year. Two of the implementations were completed as a high school CS

Principles Honors class, the third as a university introduction to computing course for non-CS

majors.

The two high school classes were taught by the same teacher, a seasoned computer science

teacher with 15+ years of experience teaching computer programming and AP Computer Science

A/AB. The teacher taught her CS Principles honors class using the BJC curriculum developed and

shared by UC Berkeley. Students were given time in class to work on lab assignments collabora-

tively, any work not completed in the allotted time was assigned as homework. Thirty-nine Brick

Wall assignments were collected between the two high school sections and forty-one Hangman

assignments were collected. The difference in assignment counts is attributed to student absences.

In contrast to the two high school classes taught by an experienced AP Computer Science

teacher, the college course had seven separate lab sections facilitated by five undergraduate teaching

assistants (UTAs) under the tutelage of a tenured Computer Science professor leading the lectures.

61



The five UTA majors were: computer science, civil engineering, materials science, paper science,

and textile technology. The UTAs had minimal prior teaching experience and no similar computing

course. The course professor led the UTAs through the labs the week before students did them,

in much the same way that high school BJC teachers keep one step ahead of their students when

they teach a new class for the first time. Fifty-five usable Brick Wall assignments were collected

between the seven lab sections and sixty-two Hangman assignments were collected. Two Brick Wall

assignments were unusable due to improper submission format.

Researchers noted the difference in background and teaching experience of the many class

instructors and felt that the UTAs portrayed an accurate representation of the range of active BJC

teachers. The level of teaching experience and quality would be reflected in the submitted student

assignments, therefore representing a wide variety of program implementations and demonstrated

learning outcomes. A compilation of submitted assignments and associated graders is shown in

Table 5.3.

Table 5.3 A breakdown of rubric grading metrics.

Brick Wall Lab Hangman Lab
High School 39 projects 41 projects
College 55 projects 62 projects
Student Graders Grad Student, Sophomore Grad Student, Freshman
Master Teachers N/A A: 102 graded,

B: 60 graded

Hangman assignments ranged from fully animated and functional games to haphazardly orga-

nized and occasionally working single method implementations. The Brick Wall projects ranged

from completely accurate walls with numerous parameters, to one brick telling a joke to a circle.

5.3.5.3 Grading

In order to evaluate the effectiveness of the newly developed rubrics in supporting consistent and

meaningful grading results, we had pairs of raters grade each assignment. A graduate-undergraduate

pair graded both assignments and the master teacher pair graded the Hangman lab. Teacher B was

only able to commit to grading half of the assignments due to heavy course load and ended up

grading 60/103 of the Hangman projects.

In order to maintain more natural results, graders were given limited instructions on how to

grade. They were instructed, however, to leave comments on the grading sheet whenever a particular

62



program raised questions as to what grade value should be given. An example comment might be

“Student A completed the task incorrectly, but utilized all of the desired list functions. Student A was

given partial credit."

5.4 Results

The aforementioned methods and research culminated in the creation of two rigorously developed

learning-based rubrics hand-tested on a data set of 100 samples each by paired graders. When tested

for inter-rater reliability the student-graders achieved a satisfactory .83 agreement on the Brick

Wall lab assignment and .78 on the Hangman lab assignment. In the student-graded assignments,

the grader acting as a computing expert remained consistent, the changing factor was the level

of computing content known by the novice undergraduate student. When tested for inter-rater

reliability the master teachers achieved a satisfactory .79 agreement on the Hangman lab assignment.

When broken down by course, Brick Wall projects submitted in the high school class averaged

M=3.63 SD=0.78 and projects submitted in the college class averaged a composite score of M=3.06

SD=0.81. Table 5.4 shows average score by rubric category.

Table 5.4 Avg. Brick Wall project scores [0-4] using a learning-based rubric.

Algorithms Abstraction Parameters Correctness Mathematics
High School 3.53 3.80 3.60 3.75 3.50
College Class 3.10 3.25 3.45 3.00 2.50

When broken down by course, Hangman projects submitted in the high school class averaged

M=3.71 SD=0.86 and projects submitted in the college class averaged a composite score of M=3.45

SD=0.82. Table 5.5 shows a breakdown of average score by rubric category.

Table 5.5 Avg. Hangman project scores [0-4] using a learning-based rubric.

Algorithms Abstraction Lists Correctness Mathematics
High School 3.80 3.92 3.63 3.51 3.70
College Class 3.56 3.52 3.26 3.34 3.60

63



5.5 Discussion

In this discussion we examine the uses of the Delphi process, the effectiveness of the resulting

rubrics, and strategies for streamlining the process for quicker and larger scale rubric creation.

5.5.1 Delphi Process

When reflecting on the dual implementations of the Delphi method, we find that the overall out-

comes are the same. The main differences between the national poll and the PD group are the time

needed to complete the study and the amount of participant attrition.

The national poll took 11 weeks to complete from the initial release of the first survey to the close

of the final-round survey. Participants were given three-week intervals to complete each survey

round interspersed with one week for the research team to analyze results and create the next

survey. As the time and participation requirements increased, so did the attrition rates. Forty-nine

participants started the first-round survey, but only fifteen completed the final-round survey. Since

much of the SIGCSE mailing-list contains active university and high school teachers, we believe

that time available to participate fluctuated with holidays and teaching schedules.

The second Delphi study took one week to complete from the initial release of the first survey

to the close of the final round survey. As panelists in this group were selected from a professional

development summer training session, they were given designated time throughout the week to

complete each round of the survey. Additionally, none of the teachers were actively teaching summer

classes, so the panel was less distracted. The homogeneous group of participants all had equal

stakes in the outcomes this research, as these newly created rubrics would be added as support

material to the BJC curriculum. Additionally, participants were committed to attending the PD so

access and attrition were not an issue.

The attrition and commitment levels demonstrated by both panels is consistent with findings

presented in Skulmoski [Sku07].

5.5.2 Effectiveness of Rubrics

Although developed by separate groups, the reliability of the rubrics turned out to be similar and

satisfactory. Each of the three paired graders were able to achieve a high level of inter-rater reliability

(> .70). Additionally, the relationship in overall measured performance of the two data sets is as ex-

pected. The Honors CS Principles high school students, when measured by the rigorously developed

rubric system, outperformed the sophomore and junior-based students taking an Introduction

to Computers course for non-CS majors. As indicated previously, the Honors students were being

64



taught by a highly-qualified teacher with years of experience in teaching computer science courses,

where as the college students completed most of their assignments in lab sessions facilitated by

novice computing undergraduate TAs.

5.5.3 Cost-Benefit Analysis of Methods

When looking through the lens of practicality, we are able to see a clear winner in regards to imple-

mentation of the Delphi. Polling the smaller more concentrated group of Master Teachers was much

faster and just as effective as polling the larger heterogeneous SIGCSE-list. Less time was required

on administrative part, as fewer reminders had to mailed out. Panelists also had designated time set

aside to focus on the study.

Furthermore, when selecting graders to evaluate the rubrics, we found minimal difference in

using early year computer science majors and BJC Master Teachers. Both groups measured similar

results while using the rubrics. When looking at availability, we find that the student graders were

more reliable and able to take on extra work.

5.6 Conclusions and Future Work

The first goal of this study was to explore the use of the Delphi Method in creating a rigorously-vetted

and systematic basis for learning-oriented rubrics. We focused our development on rubrics for two

of the most popular BJC labs taught by first and second-year high school BJC teachers. Although

these teachers may have many years of teaching experience in other subjects, their subject matter

content knowledge in programming and ability to recognize computational thinking in code needs

support.

As part of the Delphi process we surveyed two separate groups of expert panelists: members of

the SIGCSE mailing list (both professors and K-12 teachers), and BJC Master Teachers. Both groups

completed 3 rounds of consensus-building surveys and rating systems to determine the most-

important and most-relevant learning goals associated with the respective lab assignments.Using

these learning goals, we created two unique rubrics with five categories of learning goals comprised

of Learning Objectives and Essential Knowledge from the AP CS Principles Framework [Col14].

The second goal of this study was to evaluate the use of the new learning-oriented rubrics by

sample graders. There are two limitations to this study design. The first one is that the Delphi method

uses experts and if different experts were surveyed we may have different outcomes. The second

limitation is similar in that it depends on just a few raters and different raters may have different

results. In this case, we found that each pair of graders was able to establish inter-rater reliability and

65



the overall measurements in student performance reflected the differences in student backgrounds

and teacher proficiency.

When reflecting on this study, we find that a smaller Delphi panel with active BJC teachers shows

minimal drawbacks when compared to a larger heterogeneous panel. Additionally, we find that

when using the rubrics, lower classification CS majors perform comparably to Master BJC Teachers.

Practically, there are still major drawbacks in holding a full Delphi Panel, such as locating proper

stakeholders with time-availability, knowledge on the subject, and willingness to participate.

In future studies, we will replace the master teacher panel with upper classification computer

science majors, in order to create comparably rigorous rubrics at a faster pace and at scale. It is

our hypothesis that a small team of subject-literate computer science majors (comparable to BJC

Master Teachers), when given the BJC curriculum and CS Principles Framework, will be able to

draw comparable connections in learning goals for lab assignments. We also believe that using

an expedited form of the Delphi Process as we did in study 2 ended up being very similar to the

nominal group technique (NGT) [AZ96]. As such, we will use NGT to continue to ensure an objective

consensus by team members in future implementations.

66



CHAPTER

6

STUDY 4: A STREAMLINED APPROACH

TO THE SYSTEMATIC CREATION OF

RUBRICS FOR CS PRINCIPLES

6.1 Introduction

Recent developments in the spread of K-12 Computer Science education have heightened the need

for professional development and support materials for high school teachers new to the computing

classroom. Often, these novice teachers are given a pre-built curricula from a third party entity such

as Code.org [Cod; Col17] or an academic institution [Uni15; Ute]. One of the AP Computer Science

Principles curricula has gone through numerous iterations of redesign while simultaneously being

available to high school teachers for active use in the classroom. Throughout the redesigns, many

of the student lab assignments were distributed to teachers without rubric support. Although the

teachers using the curriculum take part in a multi-week professional development program, there

is still room for improvement in their understanding of computational concepts as displayed in

student programs. Without proper rubrics, the teachers were unsure of the most important goals of

each lab, and how to know if students met those particular goals in their programs.

67



In previous research [Ste16; Cat16; CB17], several systematic approaches to creating rubrics have

been presented, however, they are not cost-effective for the frequent restructuring of CS activities.

In this research, we present a streamlined approach to creating rubrics that stems from the Nomi-

nal Group Technique established in educational psychology. We hypothesize that this alternative

method will lead to improved practical use in designing rubrics, than of previous researchers.

The next section of this paper will examine the different techniques used for developing rubrics

in beginner computer science courses. It will then go into a brief introduction of techniques for

improved methods in group decision making. The remaining part of this paper explains our new

approach and the resulting outcomes.

6.2 Background

Research on systematic rubric development has increased in the past several years reflecting the

need for increased instructional support for inexperienced graders [Ste14; BD16; Yua16; CB17]. This

rise in inexperienced graders is present in both university and secondary level schools. An increased

number of teaching assistants are needed for growing CS1 class sizes and more K-12 teachers are

transitioning into computing from other disciplines.

The most common methods for systematically generating these rubrics has been a mix of surveys

of the field [Ste14; Cat16] and various group decision making techniques [Ste16; Yua16; CB17]which

require a large amount of effort and administration. The next two subsections will examine the

current methods for creating rubrics and then introduce an alternative methodology for timelier

group decision making.

6.2.1 Rubrics in CS

Both Stegeman and Cateté’s early research attempts at systematically creating rubrics focused

on in-depth literature reviews of the field [Ste14; Cat16]. Stegeman’s effort examined and cross-

referenced code quality handbooks for software engineering, whereas Cateté investigated literature

on auto-graders such as ASSYST. Stegeman et al. paired down their generated list of over 400 quality

statements down to just 9 criteria using instructor interviews and feedback. Cateté’s list was filtered

down to 5 criteria that were general enough to apply towards a blocks based programming language.

Cateté then converted these criteria into a-4 point rubric which was iteratively revised through

student and instructor testing until sufficient inter-rater reliability was achieved. Cateté found the the

rubric generated auto-grading criteria focused primarily on task-completion and did not highlight

learning goals which would lead to better teacher support and expected student outcomes[Cat16].

68



The later attempts at creating rubrics relied on expert generated rubrics [Yua16], some using

group decision making techniques [Ste16; CB17]. Yuan et al. had an experienced professor create

an ‘expert’ rubric that would be used by novice graders participating in a crowd-sourcing program.

Their evaluations showed that without a rubric students perceived the feedback from expert graders

to be significantly more useful than that of novices. However, there was no significant difference in

perceived helpfulness between expert feedback and novice rubric generated feedback. These results

only measured perceived helpfulness by students and do not focus on validation or reliability of the

rubric which is a focus of Stegeman [Ste16] a’snd Cateté’s [CB17]work.

Stegeman et al. revised their initial rubric scheme (2014) through a 3-part iterative design

cycle involving instructor feedback and think aloud studies. The goal was to design a rubric that

had category descriptions which could clarify the differences between levels such that a student

could understand “what good performance on a task is; how their own performance relates to

good performance; and what to do to close the gap" to improve their score [Ste16]. Stegeman et al.

suggested construct validity through the literature basis used to initially create the rubric, as well as

through the intense instructor involvement recurring each iteration cycle.

Cateté’s revisit to rubric creation pivoted from the task-based rubric developed using auto-grader

literature to learning-based rubrics generated through Delphi surveys [CB17]. Cateté performed a

national and local modified Delphi survey to generate two separate rubrics. During this process

expert computer science teachers reviewed each of the learning objectives presented in the course

framework and selected the best fitting ones to be a part of the rubric. Only criteria with the highest

level of consensus were included in the final rubrics. Consensus was achieved through 3 rounds of

iterative surveys spanning up to 11 weeks. The generated rubrics were then tested for inter-rater

reliability between novice and expert graders, where moderately high levels (k > 0.7) of reliability

were found.

In each of the presented rubric development methods, a large amount of time is needed to

generate each rubric. Furthermore, many of these rubrics rely on the presence and assistance of

one or more experts in the field. These methods limit the scalability of rubric creation, which is

critical during this time of increased infusion of computing courses into K-12 schools. We believe

we can improve on these methods while maintaining systematic rigor by streamlining the Delphi

method used in Cateté 2017 and instead utilizing the similar, but more time efficient, Nominal

Group Technique.

69



6.2.2 NGT vs. Delphi

In Cateté’s 2017 report, the Delphi method was shown to be a rigorous method for creating well-

defined learning-based rubrics, however, the report also listed such drawbacks as time commitment,

administrative involvement, and resource acquisition [CB17]. Research has proven the Delphi

method to be useful for obtaining consensus from a group of expert opinions by relying on four

pillars: anonymity, iteration, feedback, and aggregation [Sku07]. These pillars allow for asynchronous

group decision making by geographically dispersed participants, but also require a large amount of

deliberation between idea solicitation and aggregation. Another technique in Educational Psychol-

ogy that seems better fit to the situation of rubric creation and learning objective generation is the

Nominal Group Technique (NGT).

NGT and Delphi surveys are both methods for group brainstorming by a structured group of

individuals moderated by an authoritative facilitator in order to seek group consensus on applica-

tions such as problem identification, question generation, and development of solutions [Gus73].

Similar to the Delphi method, NGT is a product of 1960s social psychology and is used as a bridge

between researchers and practitioners [Del86]. Additionally, both methods rely on the belief that

consensus by experts can generate a strong, effective, empirical generalization [Pow03]. The primary

difference between these two techniques is that NGT forgoes the Delphi pillar of anonymity and

instead chooses to benefit from the time saving effectiveness of co-located participants. Figure 6.1

illustrates the two processes.

While participants in the Delphi method are geographically dispersed, participants in NGT

are co-located and talk directly with the facilitator and one another. The in-person interactions

are advantageous in that participants can build rapport with the facilitator and feel a sense of

accomplishment as results are seen immediately after the session [HH12]. A caveat to this in-person

interaction however, is that the facilitator must refrain from overriding a diversity of opinion to

create an artificial consensus. As doing so calls into question the validity of the final results [Tei06].

The modern NGT protocol has been framed by researchers into the following five steps [Pot04;

McM16; HH12]:

1. Introduction and explanation: The facilitator welcomes the participants and explains to them

the purpose and procedure of the meeting.

2. Silent generation of ideas: The facilitator provides each participant with a sheet of paper with

the question to be addressed and asks them to write down all ideas that come to mind when

considering the question.

3. Sharing ideas: The facilitator invites participants to share the ideas they have generated. The

70



(a) (b)

Figure 6.1 (a) The Delphi Process hinges on iterative cycles of survey generation and response aggrega-
tion. (b) The Nominal Group Technique encourages participants to write ideas down individually prior to
sharing with the group.

ideas are usually written down on a board for all other members to reference. The round robin

process continues until all ideas have been presented. No debates should happen during this

time.

4. Group discussion: Participants are invited to seek verbal explanation or further details about

any of the ideas that colleagues have produced that may not be clear to them. The facilitator’s

task is to ensure that each person is allowed to contribute and that each idea is discussed.

5. Voting and ranking: This involves prioritizing the recorded ideas in relation to the original

question. Following the voting and ranking process, immediate results in response to the

question are available to participants so the meeting concludes having reached a specific

outcome.

In the next section, we present our methods for building on the Nominal Group Technique to

streamline the rubric-making process to create a large suite of rubrics.

71



6.3 Methods

A number of techniques have been used to create well-defined and meaningful rubrics for introduc-

tory computing courses. While these rubrics were built with advanced theoretical bases in mind,

they are not time-efficient for the quickly evolving CSP coursework. In order to maintain the rigor of

the learning-based rubric while improving upon the implementation costs of the Delphi method,

we implemented a modified NGT process. One advantage pointed out by Cateté [CB17] is that the

localized version of the Delphi worked much smoother with all participants meeting in person for

the week. Unfortunately, gathering a group of K-12 computing teachers during the school year is not

easy to do, particularly since there are never more than a few computing teachers in a single district.

In this section, we describe how we modified the variables listed in Cateté 2017 and refactored the

process to closer align to NGT which we believe fits a more practical development process.

6.3.1 Training new ’Masters’

Although Master teachers are ideal candidates for creating rubrics, it is not feasible to get them

together for a long enough period to create all the rubrics. In Cateté 2017, it was suggested that a

pair of Computer Science undergraduates were able to grade rubrics as well as the pair of Master

teachers. Therefore, we chose to form a group of Computer Science undergraduates to serve as

substitutes for Master teachers in our process. In this experiment, we used a team of four advanced

Computer Science undergraduates in an independent research course in Computer Science. All of

the undergraduates were in their last two years of the CS major.

To prepare the team, we introduced CS Principles and rubric development during two 90 minute

training sessions. First, we introduced the new team to the course and the AP CS Principles Frame-

work. We walked the team through the seven big ideas of AP CS Principles (Algorithms, Abstraction,

Creativity, Big Data, the Internet, Programming, and Collaboration). The AP CS Principles curricu-

lum framework includes learning objectives and essential knowledge components for each big idea;

these form the basis of our learning-based rubrics. After this introduction, we taught the team about

the differences in analytical and holistic rubrics as well as the difference between task-based and

learning-based rubrics as identified by Cateté et al.

Once the junior research team demonstrated basic understanding of the computing concepts

and rubric techniques through verbal questioning and examples, we instructed them in their task of

creating new CSP rubrics for the active lab assignments in the curriculum. The team was instructed

to make both task and learning- based rubrics, however, this paper only focuses on the latter.

72



6.3.2 Streamlining the Process

In order to systematically create the new set of learning-based rubrics, we implemented a modifica-

tion of the NGT. In addition to training qualified participants instead of using preexisting ‘experts’,

we divided the work load among the team, such that each of the seven course units were examined

by at least two people before being sent to the group discussion.

After pairing the undergraduates into teams of two, we distributed the course units and major

lab assignments. We defined a “major" lab assignment as one that used more than four blocks

of code in the final solution. For each major lab assignment, the pairs were to individually select

each of the learning objectives and essential knowledge components they felt best matched the

assignment. They were instructed to focus particularly on objectives dealing with programming,

algorithms, and abstraction since they were the most relevant big ideas for labs.

Once each person had a list of learning objectives, they shared and discussed it with their partner.

Any objectives that overlapped were automatically included, and those that did not overlap were

discussed until the pair could come to an agreement. After each pair of researchers compiled a list

of learning objectives for their particular lab assignment, the team of four met back up to discuss

any outstanding learning objectives with input from the other pair.

After each lab had corresponding learning objectives, the team was instructed in how to cluster

related objectives and set anchor points. For each category of the rubric, the team was instructed to

come up with a simple description of one or two words, and then a set of 2-3 objectives. The next

step in developing the rubrics was for the team to create anchor points, or benchmarks.

These markers would indicate a completed version of the assignment followed by textual de-

scriptions for the rubric levels of above expectations, below expectations, and needs improvement. A

score of zero was reserved for no attempt made. Each pair created corresponding rubrics for the lab

assignments they investigated earlier. Our process is illustrated in Figure 6.2 and can be compared

to the original NGT methodology in Figure 6.1b.

6.3.3 Quality Assurance

Once the team had completed their rubrics for the labs, we had an external fifth undergraduate

researcher go through and unify the rubrics. As each set of rubrics was created by a separate pair,

there were slight differences in their wording or phrases. We used a fifth researcher, trained in a

similar fashion, to read through all of the rubrics and align the goals and anchors where needed. For

example, if pair 1 labeled a category clean-code and pair 2 labeled a similar category cleanliness

this fifth person would go through and relabel categories to match. This was also true for aligning

anchor values such as ‘some abstract functions’ versus ‘a few abstract functions’.

73



Figure 6.2 Our Modified Nominal Group Technique pairs participants prior to group discussion.

In order to create rubrics more quickly while still maintaining a systematized procedure in-

fluenced by theory, we augmented the Nominal Group Technique as described by Delbecq and

McMillan [Del86; McM16] to accommodate a more efficient work flow given the number of rubrics

needed for a full curriculum.

6.4 Results and Discussion

After applying our modified NGT process a total of 32 learning-based rubrics and 34 task-based

rubrics were created that corresponded to each of the lab assignments in the seven CS Principles

curriculum units. All 66 of these rubrics were created over a span of ten sessions each lasting between

60-90 minutes.

6.4.1 A Modified NGT

This study aimed to test whether or not we could improve upon methods for developing introductory

computing rubrics. In order to accomplish this, we trained a 4 person team in the CS Principles

curriculum complementing their pre-existing computer science skills. We further enhanced the

team by giving them supplemental training in rubric development. By creating a localized team of

‘almost experts’ [Yua16], we were able to adapt the NGT process to be used for rapid rubric creation.

NGT relies on qualified participants to make expert judgments and opinions on a given topic.

74



Table 6.1 Common learning objectives between between assignments with similar mechanics

Pascal’s Triangle - Algorithms Making a Forest - Algorithms
EK 5.5.1A Numbers and numerical concepts are
fundamental to programming.

EK 5.5.1A Numbers and numerical concepts are
fundamental to programming.

EK 4.1.1F Using existing correct algorithms as
building blocks for constructing a new algo-
rithm helps ensure the new algorithm is cor-
rect.

EK 4.1.1F Using existing correct algorithms as
building blocks for constructing a new algo-
rithm helps ensure the new algorithm is cor-
rect.

EK 4.1.1D Iteration is the repetition of part of
an algorithm until a condition is met or for a
specified number of times.

EK 4.1.1E Algorithms can be combined to make
new algorithms.

Unfortunately, gathering multiple CS Principles teachers together for a prolonged period of time

is not always feasible. Furthermore, not all CS Principles teachers have a deep background in

programming or computing. Since the CSP course was just created with its first national exam in the

United States in 2017, high school teachers have little experience using the CSP framework and little

to no experience grading labs for this course. Most high school teachers who have participated in

CSP professional development took one to five computing courses in their undergraduate degrees.

We argue that 3rd and 4th year computer science undergraduate students have sufficient computer

science expertise to understand novice CSP student programs, and that a focused workshop that

introduces them to the CSP framework is sufficient preparation for rubric development.

Other modifications that we made to the NGT process includes inserting a shorter refinement

step between a pair of participants before introducing ideas to the full group. These steps are similar

to a think-pair-share [Kot13]methodology. First, we had pairs work together to create a list of learning

objectives, grouped by category (e.g. algorithms, programming, abstraction) representative of the

final rubric. By submitting full drafts of rubrics rather than submitting individual learning objectives

to the group, participants were able to discuss assessment criteria as a whole. This made it so that

each lab assignment had a cohesive and comprehensive list of learning objectives that were agreed

upon by the team.

Another benefit to submitting whole rubrics was that the discussion time spent on an individual

rubric was more focused, streamlining the total time spent on developing an individual rubric.

The team would take about 20 minutes to create a learning based rubric, which required matching

learning objectives from the CS Principles Framework to lab descriptions. This time varied depending

on similarities between lab assignments, as some projects built on earlier ones.

75



6.4.2 Rubric Quality and Distribution

After the initial research team created all of the rubrics, a fifth trained person combed through each

of the rubrics for alignment of language, grading scales, and category names. Although much of

the work dealt with formatting and minor text corrections, we did notice a trend in the rubrics.

A few of the category titles were popular across multiple rubrics. For instance, each rubric had a

category with a simple name, such as ‘algorithm’ which would include the overarching learning

objective plus additional essential knowledge components tailored to the specific assignment. Table

6.1 shows two separate algorithm categories with similar learning objectives. This is interesting

because it demonstrates a consistency in our team to recognize algorithmic thinking in the labs,

but also because we can see that for similar programming mechanics across assignments, our team

chose to evaluate them using similar measures. Although this is not a true measure of validity, it

indicates consistency in the content of these rubrics.

After unifying each of the rubrics into a similar format and language, the rubrics were released

to the active CSP teachers for immediate use through both an email list as well as through an on-line

CSP teacher discussion forum. We asked one of the CSP professional development leaders to post

the rubrics as a new resource, since the teachers were more familiar with, and thus responded more

frequently to, this leader. The rubrics were made available through a bulk archive file or individually

through a folder hosted online. After the rubrics were made available to the CSP teachers, there was

a significant decline in new requests for rubrics. This led us to believe the teachers were satisfied

with the rubrics created.

6.4.3 Limitations

There are several limitations to this study. The primary limitation is that we cannot yet provide

measures of validity or robustness for the rubrics. We plan to investigate these features of the rubrics

in future work. Although they may not yet be validated, providing these rubrics quickly to new

teachers helps them feel more confident in teaching this new CSP course, which is important in

getting the class taught.

Another limitation to this experiment is that we were not yet able to collect formal feedback from

teachers who have actually used the rubrics in their classroom. Given the distribution platforms

used, it was not possible to collect data on number of downloads or how the rubrics were used. The

CSP trainers collected some feedback during bi-weekly conference calls with the new CSP teachers.

CSP trainers reported that new teachers just learning to teach the course “feel more comfortable

about determining whether or not their students have learned the necessary skills.”

Similar to the previous limitation, we are unsure how many teachers used the rubrics for reference

76



versus those who used them in their classroom or distributed them to students prior to assigning

lab work. As educators, we consider all of these to be positive (if unmeasured) outcomes. Teachers

who use the rubrics as a reference can gain insight into how to convert CSP learning objectives into

written descriptions of code. CSP teachers who use the rubrics for grading now have an objective

rubric that should help them grade more fairly and consistently [AK09]. Students with access to the

assignment specific rubric before grading occurs can plan their work with better knowledge of how

it will be evaluated [Eug16].

Although we find limitations in the current presentation of our study, overall, these results

indicate a positive direction for systematic rubric creation that is quicker and more feasible to

implement than prior methods. During the modified rubric creation process, two separate CSP units

in the curriculum were taken down and reorganized. Our research team was able to adjust around

this and update the new rubrics within a week. While the reliability and validity of the rubrics is

uncertain, having them available this quickly helps new teachers handle newly changed curricula.

6.5 Conclusions and Future Work

This research suggests that a co-located team of trained advanced undergraduate computing majors

can create rubrics for use by new computing teachers to assess learning objectives for an introductory

Computer Science Principles course. Creating expert rubrics have taken researchers a significant

amount of time through both survey of the fields and group decision techniques [Ste14; CB17].

Using the traditional Delphi method identified in Cateté 2017, it took the researchers 11 weeks to

get the final version of one rubric. Using the modified in-person Delphi took much less time, but

still utilized a group of expert teachers.

Partnering with a group of teachers, in-person, during the active school year, is much more

difficult than during a summer PD session. Unfortunately, CS Principles and other K-12 courses are

being updated on a rolling basis throughout the year. To address these challenges, we have trained

a team of experienced computer science students on a CS Principles course in order to become

‘almost experts.’ We then used this team to create rubrics for a full CS Principles course using a

modified NGT method which further streamlined the rubric making process. Our method decreased

the time to make a rubric to a single session. In just 10 sessions, the team systematically created 66

rubrics (learning and tasked based), which have subsequently been released to active CS Principles

teachers.

Further research will be conducted to evaluate the reliability and validity of these rubrics. Prelim-

inary investigations into validity metrics has led us to believe that the validation criterion set out by

Messick [Mes96] is more suited for high-stakes testing, and that Baartman’s Wheel of Competency

77



[Baa06] is better suited for evaluating low-stakes project based rubrics. We plan to apply Baartman’s

methods, and expect that the resulting reliability of the new rubrics will show minimal difference

between experienced and novice graders as they were developed in a systematic way using clear

and consistent language.

78



CHAPTER

7

STUDY 5: AN EVALUATION OF BJC

RUBRICS WITH ACTIVE CS PRINCIPLES

TEACHERS

7.1 Introduction

In this chapter, we extend our evaluations of CS Principles rubrics we developed in Chapter 6, which

were created using a modified version of the Nominal Group Technique (NGT). We recruited active

CS Principles teachers and current STEM Education university students to use our rubrics while

evaluating student projects. In this study, we wanted to compare participants’ ability to identify

relevant learning objectives directly in student’s code as well as evaluate how educators were able to

use our rubrics consistently. 1

1See Chapter 2 and Chapter 6 for more background information relevant to this study.

79



7.2 Methods

The priority for this study was to recruit newly active high school computing teachers and soon to

be CS Principles teachers. We limited participation in the study to those had taught less than 2 years

of AP CS Principles and who have not taught other computer programming courses including AP

Computer Science A. We recruited from the CSTA mailing-list, and allowed cs teachers to share this

research opportunity with their STEM educator peers. We also invited student participants from NC

State’s College of Education via emails sent out through Science, Technology and Math Education

administrators. Due to the length of the study, teacher participants were compensated with an entry

into a raffle for a $500 gift card and student participants were given a $10 to $15 dollar gift card

depending on the number of other students they referred in the post survey.

7.2.1 Participant Procedure

For the study, participants completed a pre-post survey with an intermediate reflection activity

on rubric use and an optional introduction to the Snap! programming environment. Participants

completed a brief online pre-survey collecting demographic information, teaching background, and

education level. The pre-survey also included a high-level program comparison activity between

three sample coding but no rubrics.

Once the pre-survey was complete, participants were directed to part two where they would

reflect on their evaluation strategies for the previous samples. Sample reflection questions include,

“What metrics did you use to grade the assignments? Did you refer to the learning objectives for the

course? If you did not take a look at the learning objectives, what metric did you use to gauge student

learning?" After reflecting on their evaluation strategies, participants were provided with the list of

Essential Knowledge items relevant to the prior labs. Participants were given the descriptions for

three lab programming assignments and were to pair the appropriate Essential Knowledge (EK) with

each lab. Participants were then shown one of our sample rubrics and were tasked with re-evaluating

the student code, this time with both categorical rubric grades and by highlighting the code that

directly correlates with each given grade. There was a link provided to an optional Snap! tutorial,

which shows them how to run and examine student projects and described how loops and other

functions are implemented in Snap!. The responses to the reflective questions and EK matching

were not stored as these were practice activities.

After participants gained experience in grading Snap! student projects, they completed a final

post-survey to conclude the study. In the post-survey, participants graded three samples for each of

three different programming labs, highlighting in each program the code that directly related to the

80



described learning objective for that category of the respective rubric. Participants were given the

original lab description handed out to students, a link to the live sample running in Snap!, and code

snapshots of the relevant student-created functions. For each lab description in the post-survey,

we provided one sample each of high, medium, and lower quality student code for participants

to review. Descriptions of the lab assignments are listed in the subsection below. These labs were

chosen due to their level of moderate difficulty, although Binary includes recursion, the main task

for students is to abstract a new base variable. The C-Curve task is more complex and tests the upper

bounds of the CS Principles teachers’ understanding of different CT concepts.

7.2.2 Lab Assignment Descriptions

• Beyond Binary This lab extends the original decimal to binary lab assignment. In this version,

students are to generalize the pattern for conversion from base 10 to base 2 with a ‘base’ block

that takes the base as a second input. Support for bases above 10 are optional. The figure

below demonstrates the code for converting decimal to binary. To convert this to another

base, a student need only add another input parameter and replace all the 2’s in this code

with the new base.

Figure 7.1 Base Snap! code for a Decimal to Binary conversion block.

This is a recursive function that must have an if-else structure that directly computes the

smallest base case if number is the smallest acceptable value, and an else step that uses the

code again for larger input numbers. For base 2, or binary, the base case is that the number

fits in a single bit–that is, it has to be less than 2. If so, the number itself, 0 or 1, is the desired

output, and the function reports back that number. See the if portion in Figure 7.1.

81



In the else portion of the code, known as the recursive step, the rightmost bit of the result is the

remainder of dividing the number by 2. That is, even numbers end with 0, and odd numbers

end with 1. The rest of the result is a recursive call on the (integer) quotient of the number

divided by 2. The combiner is join because we want to string the digits together. It may be

surprising that we don’t use an arithmetic operator, since we’re working with numbers, but

the desired result is a numeral, which is a visible representation of a number, rather than the

numeric value itself. A numeral is a text string, so the combiner is a string operation.

• C-Curve From the lab description: “We can make very very complex images by just repeating

the same shape multiple times. You’ll be writing the recursive function to draw the C-Curve.

Below the base case is that the sprite draws a single line. The sprite starts facing right and

faces right at the end. (Hint - the direction that the sprite points at the end is important! It

should point in the same direction it did at the beginning of the recursive call.)

(a) (b)

Figure 7.2 Level 1 and 2 of the C-Curve algorithm

In the next level, start facing right and end facing right but repeat the previous level twice (red

and blue below).”

(a) (b) (c)

Figure 7.3 Extended recursion levels of the C-Curve

82



7.3 Results

A total of 19 participants were recruited with 9 teachers and 10 students. A total of 15 participants

(8 teachers, 7 students) completed the Binary Conversion activity, and a total of 14 participants (6

teachers, 8 students) completed the C-Curve lab. Due to the flexibility of the 3-part online study,

participants were able to stop and continue working at later times. For each part of the study, we

removed data where participants spent less than 2 minutes on that part. This was because a duration

of less than two minutes does not allow enough time for reading the question. The multiple breaking

points coupled with time filters cause the differences in the number of participants for each lab. A

breakdown of participation demographics is available in Table 7.1

Table 7.1 Participant breakdown for the Spring 2017 study. Participants in the middle row are part of both
data sets.

Under Review
Total # of
Participants

Gender Occupation Education

Binary Converter Only N=5
3 Female,
2 Male

3 CSP Teachers
2 Math Ed Majors

3 Bachelor degrees
1 Upperclassman
1 Underclassman

Binary & C-Curve N=10
5 Female,
5 Male

4 CSP Teachers
1 Chem Teacher
3 Tech Ed Majors
2 Math Ed Majors

2 Master’s of Education
3 Bachelor degrees
3 Upperclassmen
2 Underclassmen

C-Curve Only N=4
3 Female,
1 Male

1 Business Teacher
3 Math Ed Majors

1 Bachelor degree
2 Upperclassmen
1 Underclassman

7.3.1 Intra-class correlations

When analyzing this data, the first aspect we investigated was reliability statistics between raters.

Reliability value ranges between 0 and 1, with values closer to 1 representing stronger reliability.

To determine the variance between 2 or more raters who measure the same group of subjects, we

use inter-rater reliability. We use Intra-class correlation coefficient (ICC) to reflect both a degree of

correlation and an agreement between measures. Of the 10 forms of ICC, we chose the consistency

definition of ICC(2, k ) meaning a two-way random model with k raters.

We calculated an overall level of reliability using the 10 core participants across both data

83



samples, binary and C-Curve. ICC estimates and their 95% confidence intervals were calculated

using the SPSS statistical package based on a mean-rating (k = 10), consistency-agreement, 2-way

random-effects model. We calculate our results to be ICC= 0.75 with 95% confidence interval= 0.61-

0.86. Based on the ICC results, we concluded that the inter-rater reliability is “good” to “excellent”

using Cicchetti’s guidelines for reliability interpretations [Cic94].

We next computed reliability for each lab separately. For each of the lab descriptions, we cal-

culated the combined reliability of both participant groups, just teachers, and then just students.

These results are described below.

7.3.1.1 Binary Conversion Lab ICC

Teachers+Students We calculated an overall level of reliability using the 15 total Binary participants.

ICC estimates and their 95% confidence intervals were calculated based on a mean-rating (k = 15),

consistency-agreement, 2-way random-effects model. We calculate our results to be ICC = 0.90 with

95% confidence interval = 0.80-0.96. Based on the ICC results, we concluded that the inter-rater

reliability is “excellent.”

Teachers ICC on Binary Lab We calculated the level of reliability among teachers using the 8

corresponding Binary participants. ICC estimates and their 95% confidence intervals were calculated

based on a mean-rating (k = 8), consistency-agreement, 2-way random-effects model. We calculate

our results to be ICC = 0.87 with 95% confidence interval = 0.73-0.95. Based on the ICC results, we

concluded that the inter-rater reliability is “good” to “excellent.”

Students ICC on Binary Lab We calculated the level of reliability among students using the 7

corresponding Binary participants. ICC estimates and their 95% confidence intervals were calculated

based on a mean-rating (k = 7), consistency-agreement, 2-way random-effects model. We calculate

our results to be ICC = 0.74 with 95% confidence interval = 0.50-0.89. Based on the ICC results, we

concluded that the inter-rater reliability is “fair” to “excellent.”

7.3.1.2 C-Curve Generation ICC

Teachers + Students We calculated an overall level of reliability using the 14 total C-Curve partici-

pants. ICC estimates and their 95% confidence intervals were calculated based on a mean-rating

(k = 14), consistency-agreement, 2-way random-effects model. We calculate our results to be ICC

= 0.76 with 95% confidence interval = 0.57-0.90. Based on the ICC results, we concluded that the

inter-rater reliability is “fair” to “excellent.”

Teachers ICC on C-Curve We calculated the level of reliability among teachers using the 6 cor-

responding C-Curve participants. ICC estimates and their 95% confidence intervals were calculated

84



based on a mean-rating (k = 6), consistency-agreement, 2-way random-effects model. We calculate

our results to be ICC = 0.74 with 95% confidence interval = 0.50-0.89. Based on the ICC results, we

concluded that the inter-rater reliability is “fair” to “excellent.”

Students ICC on C-Curve We calculated the level of reliability among students using the 8 cor-

responding C-Curve participants. ICC estimates and their 95% confidence intervals were calculated

based on a mean-rating (k = 8), consistency-agreement, 2-way random-effects model. We calculate

our results to be ICC = 0.39 with 95% confidence interval = -0.16-0.74. Based on the ICC results, we

concluded that the inter-rater reliability is “poor” to “good.”

These results are discussed further below in Section 7.4.

7.3.2 Heat Mapping and Visualization Analysis

As part of the study, participants were asked to identify the code that influenced their decision for

giving out each rating. For example, they might highlight a conditional statement when determining

the amount of mathematical logic being used in the program. In total, participants made 1000+

indications, with 540 made by 15 participants who completed the Binary Conversion portion and

468 made by 13 participants who completed the C-Curve activity. One participant only completed

the grading portion of C-Curve and not the code identification task.

Code identification data was hand-tagged using Gradescope [Gra14], a web app designed for

grading paper-based assignments. This was useful as the post-survey identification answers were in

PDF format. Using Gradescope, each of the code samples were set up as a different class assign-

ment (Binary1, Binary2, etc.). We outlined each assignment in the system marking each relevant

identification question. This made it possible to quickly focus on only the relevant code data for

each portion of the rubric-graded responses. Each of the 6 assignments had a total of 6 questions,

one for each category of the rubric.

Multiple researchers were able to work in parallel tagging all 36 grading questions. Researcher 1

tagged 1/3 of the data, and trained researcher 2 how to do so as well. After researcher 2 tagged 1/3 of

the data, researcher 1 went back over and confirmed the tags. Researcher 2 then finished tagging the

last 1/3 of the data. Tags were straightforward with terms such as ’header,’ ’top if,’ and ’join block.’

The built-in statistics package would then display the frequencies of each tag for every question.

In the sections below, we present a brief formation of the rubric used for the lab assignments,

followed by representative samples of code indication by participants.

85



7.3.2.1 Binary Conversion

Table 7.2 shows each of the categories presented on the rubric, the simple name followed by the

learning objectives used to form the category (L) and the descriptive code that would appear in the

rubric ratings (R). The rubric text provided is for the highest score, 4. For a full length version of this

rubric please see the final Appendix.

Table 7.2 A sample of the categories and learning goals for the Binary Conversion Rubric.

Category Learning Goals (L) and Rubric Description (R)

Abstraction
L: An Abstraction generalizes functionality with input parameters that allow
software reuse.
R: Code properly separated into multiple abstractions. Should have separate
blocks defined.

Visualization
L: Visualization tools and software can communicate information about data.
R: Custom block reports a string of values the converts from decimal to base 3-10
(input value). 6 base 3 ->20

Mathematics
L: Numbers can be converted from any base to any other base. Iteration is the
repetition of part of an algorithm until a condition is met or for a specified number
of times. Numbers and numerical concepts are fundamental to programming.
R: Code uses mathematics (floor, mod, etc) to calculate the converted numbers.
Mathematics is used to automate function calls.

Parameters
L: Parameters provide different values as input to procedures when they are called
in a program. Code blocks and abstract functions use parameters to increase
usability and are easily changeable for testing.
R: Parameters allow users to input a number that is decimal (base 10) and a base
value (up to 10).

Style
L: Program style can affect the determination of program correctness. Duplicated
code can make it harder to reason about a program.
R: Code cleanly organized and laid out tobe read easily. Abstractions/blocks are
properly composed.

Naming
L: Meaningful names for variables and procedures help people better under-
stand programs. Documentation about program components, such as blocks
and procedures, helps in developing and maintaining programs.
R: Naming of functions, including abstractions, accurately represents the problem
being solved.

The first code sample shown in Figure 7.4 represents the Snap! code for the first Binary Conver-

sion solution participants were given. This code sample represents high-performing student code.

86



Figure 7.4 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary Conversion 1

Areas selected by participants are shaded, and colored according to whether the rubric category is

actually relevant to the code. Areas highlighted in red are misdirected, and areas in green are highly

relevant to the CT concept being assessed. Areas highlighted in Yellow are not incorrect, but are

not the most important to the category. The intensity of the color correlates to the frequency of its

selection by participants. In Figure 7.4 the intensity ranges from 7% in the red highlighting of the

parameters in the procedure heading, to 67% in green of the math operators on line 6.

Figure 7.5 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary Conversion 2

87



The second code sample shown in Figure 7.5 represents the Snap! code for the second Binary

Conversion solution participants were given. This code sample represents lower performing student

code. In Figure 7.5 the intensity ranges from 7% green highlighting on line 5 to 40% highlight of

floor(10). The extra code blocks are not a part of the main code block, and do not function when the

program runs. As a reminder, participants were given the code in a live environment to test out and

explore in detail. The large section of red highlighting in Figure 7.5 represents the 15% of participants

who selected no code for this assignment review. This is the only sample where participants selected

no code to accompany their scores.

The final code sample shown in Figure 7.6 represents the Snap! code for the third Binary Con-

version solution participants were given. This code sample represents typical-performing student

code. In Figure 7.6 the intensity ranges from 15% highlighting of the procedure declaration on line

1, to 53% highlighting of floor(n um b e r /b a s e) on line 5.

Figure 7.6 Heat map of areas that influenced grader decision for ‘Mathematics’ in Binary Conversion 3

7.3.2.2 C-Curve

Table 7.3 shows each of the categories presented on the C-Curve rubric, the simple name followed

by the learning objectives used to form the category (L) and the descriptive code that would appear

in the rubric ratings (R). The rubric text provided is for the highest score, 4.

The first code sample shown in Figure 7.7 represents the Snap! code for the first C-Curve solution

participants were given. This code sample represents typical performing student code. The intensity

of the color correlates to the frequency in which is has been selected. In Figure 7.7 the intensity

ranges from 15% in the yellow highlighting of the whole program to 76% in green of s i z e ×
p

(2)/2

88



Table 7.3 A sample of the categories and learning goals for the C-Curve Rubric.

Category Learning Goals (L) and Rubric Description (R)

Abstraction
L: An Abstraction generalizes functionality with input parameters that allow
software reuse.
R: Code properly separated into multiple abstractions. There should be a hierar-
chy of functions (the main C-Curve fractal level should call other functions).

Visualization
L: Visualization tools and software can communicate information about data.
R: C-Curve is styled correctly (see stage6 in the handout). There exists a variable
size and a variable number of levels. Levels are correctly added to the corners of
the main center C-Curve (angles all correct)

Mathematics
L: Algorithms can be combined to make new algorithms. Using existing correct
algorithms as building blocks for constructing a new algorithm helps ensure the
new algorithm is correct. Numbers and numerical concepts are fundamental to
programming.
R: Code uses mathematics (loops, operations, ...) to monitor length of C-Curve,
how many levels of C-Curve to make.

Parameters
L: Parameters provide different values as input to procedures when they are called
in a program. Code blocks and abstract functions use parameters to increase
usability and are easily changeable for testing.
R: Parameters allow users to input size of C-Curve and number of levels.

Style
L: Program style can affect the determination of program correctness. Duplicated
code can make it harder to reason about a program.
R: Code cleanly organized and laid out tobe read easily. Abstractions/blocks are
properly composed.

Naming
L: Meaningful names for variables and procedures help people better under-
stand programs. Documentation about program components, such as blocks
and procedures, helps in developing and maintaining programs.
R: Naming of functions, including abstractions, accurately represents the problem
being solved.

on line 6 and 8.

The second code sample shown in Figure 7.8 represents the Snap! code for the second C-Curve

solution participants were given. This code sample represents high performing student code. The

intensity of the color correlates to the frequency in which is has been selected. In Figure 7.8 the

intensity ranges from 7% in the yellow highlighting of the whole program to 76% in green highlighting

of math operators on lines 6 through 8.

89



Figure 7.7 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-Curve Sample 1

Figure 7.8 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-Curve Sample 2

The third code sample shown in Figure 7.9 represents the Snap! code for the third C-Curve

solution participants were given. This code sample represents low-performing student code because

of its repetitive nature and incorrect solution. In Figure 7.9 the selection frequency (intensity) ranges

from 15% in the yellow highlighting of the whole program to 53% in green of (s i z e /2)(l e v e l −1) on

line 5.

90



Figure 7.9 Heat map of areas that influenced grader decision for ‘Mathematics’ in C-Curve Sample 3

7.4 Discussion

When analyzing this data, the first aspect we investigated was the consistency model for inter-rater

reliability between raters. To determine these values we analyzed average consistency across both

projects with an ICC value of .74 which is rated acceptable for research purposes 2. This is promising

as we have mixed levels of coding samples and CS Principles teaching experience (0-2 years). When

broken down by project, we notice there is a discrepancy between experienced and inexperienced

teachers.

For the Binary Conversion project, which is the easier or our two projects, we find that CS

Principles teachers scored very high with an ICC of .87. The STEM education students also scored

acceptably high with .74. Both of these statistics show that our graders are giving students consistent

grades while using our rubrics, and for experienced CS Principles teachers, their level of agreement

is even tighter. This is expected for a simple program like the Binary Conversion where students

only need to add an additional variable to solve the problem given the starter code.

Although both programs use recursion, the C-Curve program is noticeably harder as students

must identify the recursive pattern on their own before implementing the problem in code. The

overall ICC for the combined participant group is .76, for teachers the score is close with .74. However,

STEM Education students as a group only scored an ICC of .38. Although the ICC score is across

all three student samples, this difference in correlation can be visibly seen in the distributions for

2For high stakes clinical research a value of .90 is considered sufficient [GM09]

91



Figure 7.10 Combined score distribution for C-Cure Sample 2, ICC(2,14)=.75.

C-Curve sample 2. Figure 7.10 shows the score distribution for sample 2 of the C-Curve assignment.

The ICC value reflects the density of score distribution. When looking at just the teacher data in

Figure 7.11, there is a similar density to the overall scores. The student score distribution in Figure

7.12 is strikingly different. Figure 7.12 shows how the scores for the students were distributed in a

very polarized fashion.

Figure 7.11 Teacher score distribution for C-Cure Sample 2, ICC(2, 6)=.74.

92



Figure 7.12 Student score distribution for C-Cure Sample 2, (ICC2, 8)=.31.

When investigating the lower correlations for C-Curve compared to Binary, we were able to

identify several key findings. To demonstrate these, we use C-Curve sample 2 as an example. The

first finding we identified was the polarization of student scores; students either gave out high scores

of 4, or low numbers between 1-2. The appropriate score set for Sample 2, our high performing

student sample, is straight 4s, which our CS Principles teachers were better able to identify.

To understand the reason for these low scores, we split our students by major and found that both

of the Technology education students gave consistently lower scores compared to Math education

students. We later went back to our teacher data to find a similar trend based on experience. The

lowest scoring teacher, P6, highlighted in blue circles in Figure 7.11, was our Chemistry teacher

who hadn’t taught CS Principles yet. We believe that as Math education majors tend to take more

math classes and have seen recursive functions or fractals before, they were more familiar and thus

comfortable with grading the C-Curve samples. This could be echoed in the CS Principles data as

4 of the other CS Principles teachers selected Math as their primary or secondary teaching field

and 1 teacher listed Business. The remaining two students who gave lower scores were identifiable

as participants with noticeably shorter duration periods when completing the post survey. This

implies that they did not consider the problem fully and moved on quickly. The polarization effect

we see in C-Curve sample 2 is also present in samples 1 and 3, although not as severely.

The next aspect that we looked at for analysis is the code selection process. Figures 7.4-7.9

demonstrate selections made by participants. From these examples we see that participants were

better able to match computational thinking concepts from rubric to code when code samples

93



resembled mid to high level student performance. As student code deviated from the intended

solutions, participants diversified where they were looking to evaluate the program as seen in

Figure 7.5 and Figure 7.9. In Figure 7.5 the desired code elements are not present leading some

participants to select no code, where as others will select unused code. Selecting unused code could

be a reflection of wanting to give partial credit for student work. In Figure 7.5 on the other hand,

the intensity levels are lower, meaning participants are more varied in where they are looking. It

is interesting to note, that in Figure 7.5 there is a higher intensity on turn clockwise 45◦ than

on the other turns and recursive calls. This indicates that several of the participants were able to

identify not just faults in conditional logic, but also in programming logic. Either through running

the simulation or comparing against the other working student samples, participants were able to

determine that the turn clockwise call on line 8 was incorrect.

Frequency tables for code selection across samples have shown that graders are able to locate

parameters, variables and mathematical concepts consistently. However, they less frequently tag the

logical operators which also make up the learning objectives in the mathematics category. It may

be that participants were using just their own understanding of mathematics to apply the rubrics,

rather than carefully reviewing the written descriptions of what was expected at each level. To help

participants better identify appropriate code, I will revise the short labels to replace math and logic

with calculations and comparisons.

When it came to identifying abstraction, the majority of participants selected appropriate areas

such as the block declaration, which represents the abstraction of determining a single function

and defining what it should do, or ’Everything below’ meaning they looked at the overall program as

a cohesive whole opposed to focusing on certain points. We believe this indicates that participants

were able to understand that abstraction refers to the big picture of the programs functioning parts.

Furthermore, participants were able to consistently rank ‘Style’ with little trouble. We believe

this is due to the non-technical nature of the category and the teachers’ ability to determine organi-

zational qualities within student code. We do find however, that the ‘Naming’ category, which is

similar to style in its less technical nature, had consistently more diverse responses. While the style

category is concerned with efficiency and minimizing duplicate code, naming is about understand-

ing what variables and functions are intended to do and naming them appropriately. The diversity

in code selection indicates that for harder problems such as the C-Curve, teachers need to have an

understanding of the programming elements and their outcomes to answer such categories. This

could be supported through companion resources such as detailed assignment walk-throughs or

annotated solutions.

94



7.5 Conclusions

We surveyed 19 participants ranging from CS Principles teachers with 2 years of experience teaching

the course to STEM Education undergrads who are still in the pipeline. We specifically targeted

novice CS Principles teachers to assess their use of our rubrics and how well they could identify

the computational thinking associated with lab assignments in student code. In total, participants

tagged over 1000 lines of code relating to their understanding of how CT appears in programs.

In analyzing this data, we first examined inter-rater reliability through intra-class coefficient

consistency (ICC). Overall, we found participants to have a sufficient agreement level >.76. This is

consistent with the inter-rater reliability levels achieved with the original coding samples and rubrics

created from the Delphi method in Chapter 4. We found that on the simpler Binary Conversion

problem consistency improved for both student and teacher groups. On the more complex C-Curve

assignment, teachers performed consistently, but the less experienced students had very polarized

results, with the Math education students aligning better with the true scores.

The second facet of analysis was heat map frequency analysis of the code selection data. Data

showed that as code samples deviated from efficient correct solutions, participants had a harder

time identifying the relevant aspects of code. This suggests that the rubrics could use more support

for identifying CT in lower quality code samples, such as low level block descriptions. In terms of

being able to identify types of CT, evidence suggests that participants were able to consistently

identify regions of abstraction, mathematical operations, parameters, and code styling. Participants

less frequently indicated conditional logic, which is an equal part of the mathematics category. This

inclines us to consider revising the short category titles to be more obviously include the respective

learning objectives, for example using comparisons and calculations instead of logic and math. Par-

ticipants also had more diverse and diluted frequencies than the other categories in their selections

for the the naming rubric category, which requires graders to identify the intended functionality of

custom code blocks and variables. This suggests that new CS Principles teachers could benefit from

companion resources such as annotated solution files that would more specifically demonstrate

samples that do and particularly that do not mean the desired learning outcomes.

The rubrics used in this study were created using a modified NGT model outlined in Chapter 6

to quickly produce a full suite of rubrics for the BJC CS Principles course. Given the unprecedented

growth in incoming CS Principles students and teachers, we need to produce a high quantity of

materials in a short time. However, when rapidly producing these materials we want to maintain a

sufficient level of quality and standards. This study demonstrates that active CS Principles teachers

are able to use these rubrics to assess student code consistently and accurately. This study also

sheds light on the specific support needs of new CS Principles teachers with diverse backgrounds.

95



CHAPTER

8

RUBRIC DEVELOPMENT ASSESSMENT

USING WOCA

8.1 Introduction

In previous studies, we attempted to create well-defined rubrics for a Computer Science Princi-

ples course. Our approach has evolved from task-based rubrics founded in auto-tutor assessment

strategies to learning objective-oriented rubrics built by group decision techniques such as the

Delphi method and the Nominal Group Technique (NGT). Although our previous research has found

initial inter-rater reliability through Cohen’s Kappa, we have not yet focused on validity. Despite

the gravitation in research towards Messick’s six-part validty, we have decided that his approach

is not fit for our rubric validation efforts [Mes96]. Through a field survey of validity in assessment,

we found that instead, we should focus on measuring validity and other quality criteria through

Baartman’s Wheel of Competency Assessment (WoCA)[Baa06]. When measuring our rubrics against

Baartman’s Wheel, we argue that we have met 11 out of 12 of the competencies, thus supporting the

validity of our rubrics.

The rest of this paper will discuss options for validity including both Messick’s and Baartman’s

methods. It will then explore the ways in which our rubrics and their creation process meet the

96



qualifications listed out in WoCA.

8.2 Background

As budgetary restrictions and reform in public education moves to the forefront of political agendas,

leaders and decision makers want proof that the strategies being taken are having positive effects

on students and learning. Therefore, there is a strong push for high quality assessments. Rubrics, a

simple form of assessment, also have to be of high quality to have a positive effect in the classroom.

During the 2000 Annual Meeting of the American Educational Research Association, Arter suggested

four traits for quality: content, clarity, practicality, and technical soundness [Art00].

Technical soundness refers to the reliability and validity of scoring rubrics and other assess-

ment items. In the context of this section, we define reliability as the ability for a student’s work to

repeatedly score the same marks on the same rubric. Furthermore, we define validity to refer to how

well the assessment measures what it is supposed to measure. In the next subsections we present a

discussion around reliability and validity and how they are used and measured by other researchers.

8.2.1 Reliability

Most researchers agree when it comes to terms and definitions for general reliability as it relates

to educational assessments [JS07; Ste04]. Reliability is separated out into two main concepts: 1)

inter-rater reliability, how well two different raters match on assessing student assignments and 2)

intra-rater reliability, how well a single rater will agree with their previous marks for matching work.

Inter-rater reliability is typically reported in three different ways: through consistency estimates,

consensus agreements, and measurement estimates. Consistency estimates refer to the relation

where two raters grade similarly, but perhaps with differing judgment levels. For example, an A for

rater 1 is a B for rater 2, but as a whole each student assignment has the same relationship to each

other (e.g. the same rank order). These estimates are often presented through correlation coefficients.

As aggregated by Jonsson, Pearson’s correlation is the most commonly reported, although many

researchers do not specify which correlation they are using. These correlations are typically between

.55 and .75, meaning that most researchers fail to meet the .70 acceptability criterion [JS07].

The second way in which inter-rater reliability is reported is through consensus agreement.

Consensus agreement is frequently reported due to its low barrier for calculation (percent agreement

and Cohen’s kappa). Consensus agreement directly measures how two raters match when grading.

As Jonsson’s findings show, researchers report exact agreement scores below 70% and adjacency or

off-by-one agreements greater than 90%, again showing that most researchers fail to hit the 70%

97



exact agreement mark, but do display a consistency in ratings. Jonsson notes that as the levels in

the rubric decrease, it’s more likely to achieve consensus by chance– and this should be accounted

for in the results.

The final reporter for inter-rater reliability is measurement estimate. Measurement estimates try

to preserve as much information as possible from the judges and incorporate it into an inter-rater

reliability model [Ste04]. The many-facets Rasch model determines the ‘severeness’ of a rater and

shows the spread across all judges. Additionally, this model gives an Infit statistic that indicates

the level of unpredictable variation in responses. These measurement estimates usually require

special software to calculate and do not handle nominal data. Other variations for implementation

are generalizability theory and principle components analysis. Due to the cumbersome nature of

measurement estimates, they are often ignored and not reported [JS07]

Intra-rater reliability statistics are also frequently ignored. Intra-rater reliability often requires

a test-retest approach, and with well-defined rubric categories is not a major concern to many

researchers. In situations where intra-rater reliability becomes an issue and users relay difficulties,

the rubric authors will usually revise the category descriptions to be less ambiguous.

Overall, reliability is very important to high-stakes and national assessments that are graded by

many different raters, however, reliability is not as crucial in low-stakes classroom based assessments.

In typical classroom settings, a single teacher will grade all assignments by using an analytical rubric

that compartmentalizes each of the assessed features. For those desiring to meet reliability standards

(k > .7), two raters, under certain conditions, are enough to produce acceptable levels for inter-

rater agreement [Bak96]. Additionally, research supports that reliability can be increased by using

topic-specific rubrics, especially if teachers have been trained how to use them.

8.2.2 Validity

There are different views with respect to validity when it comes to assessments [ML00; Mes96]. In

the classical model there are three main forms of validity: Content Validity, Criterion Validity, and

Construct Validity. Content validity is a type of validity that examines the test content to determine

whether it covers a representative sample of the domain to be measured. Criterion validity is the

extent to which a measure is related to an outcome. Finally, construct validity refers to the degree to

which a test measures what it claims, or purports, to be measuring.

There is a newer model however, which frames validity as one unit, Messick’s unified theory of

Construct Validity. In this model of validity there are six different aspects that are all connected and

that depend on the quality of the construct [Mes96]. AERA adopted this model in 1999 and worked

with several other organizations to frame the Standards for Educational and Psychological Testing

98



around them [Ass99]. These standards are the benchmark for national and high stakes testing. A

description of Messick’s six aspects are listed below, although they are not necessarily intuitive to

those outside the testing field.

• Content This aspect of construct validity includes evidence of content relevance, representa-

tiveness, and technical quality [Len56; Mes89].

• Substance The substance aspect refers to theoretical rationales for the observed consistencies

in test responses, including process models of task performance [Emb83], along with empirical

evidence that the theoretical processes are actually engaged by respondents in the assessment

tasks.

• Structure The structure aspect appraises the fidelity of the scoring structure to the structure of

the construct domain [Loe57].

• External Variables This aspect of construct validity includes convergent and discriminant

evidence from multitrait-multimethod comparisons [CF59], as well as evidence of criterion

relevance and applied utility [CG65].

• Generalizability The generalizability aspect examines the extent to which score properties

and interpretations generalize to and across population groups, settings, and tasks [TDC79;

Shu70], including validity generalization of test-criterion relationships [SH14].

• Consequences This aspect appraises the value implications of score interpretation as a basis

for action as well as the actual and potential consequences of test use, especially in regard to

sources of invalidity related to issues of bias, fairness, and distributive justice [Mes80; Mes89].

Both the classical model of validity and the unified concept of construct validity are useful

to the users of the assessment information when it comes to high-stakes testing. However, the

frameworks cause practical implementation problems as it is often not conceptually clear what the

authors are looking for in terms of evidence, especially to those outside of educational psychology

and psychometrics. A large part of the discrepancy for our needs is due to the nature of scoring

rubrics for problem-based assignments; they lack the necessary testing capabilities to carry out

recommended empirical procedures and psychometric statistics such as national survey items,

post-course evaluations, and factor analysis. [JS07].

The scoring rubrics that we have developed are intended for teachers to gauge whether or not

their students are meeting the necessary learning goals of the individual lab assignments and if

needed, adjust their instruction. Completing full stack construct validity testing is impractical for

such a low-stakes formative assessment.

99



8.2.3 Low-Stakes Problem-Based Assessments

As Baartman reasons, measures of reliability or validity are not fundamentally wrong for [mixed

assessment]1, but they should be applied in a different way and be combined with other quality

criteria that are especially important for competency assessment. We argue that this applies to our

assessments as well, since they deviate from the classical tests in which the classical methods were

designed.

Figure 8.1 Baartman’s Adapted Framework: The Wheel of Competency Assessment [Baa06]

Baartman presents a case for the Wheel of Competency Agreement, as shown in Figure 8.1. This

validated framework suggests 12 criterion for quality assessment of competency assessment [Baa06].

Neither validity nor reliability are explicitly listed as they present larger container concepts that

are often misconstrued. Instead this wheel is based on singular concepts decoupled from larger

complicated processes making it more accessible to outside researchers. Baartman maintains the

inter-connectedness of the concepts through the circular shape of the wheel, but gives each one its

own zone. Each of these 12 concepts is listed and described briefly below.

• Fitness for purpose: Assessment should align with the goal of the learning process and with

1This article argues for integrating different assessment methods into a Competency Assessment Program, in which
newer forms of assessment can be used in combination with more classical methods.

100



the instruction given.

• Comparability: Scoring should occur in a consistent way using the same criteria for all learners.

• Acceptability: The assessment has to be accepted by those in the profession. Acceptability has

to do with the attitudes and views of the stakeholders.

• Transparency: Is the assessment clear and understandable to all participants? A possible

indication is to check whether learners can judge themselves and other learners as accurately

as trained assessors.

• Reproducibility of decisions: Decisions about the learner are made accurately and do not

depend on the assessors or the specific assessment situation. It is not necessary for decisions

to be objective to be reproducible.

• Authenticity: relates to the degree of resemblance of the assessment to the future profession

life. Does the assessment evaluate competencies needed in the future workplace?

• Fairness: The assessment should not show bias towards a certain group of learners and should

only reflect the knowledge, skills and attitudes of the competency at stake. It should not

depend on unfamiliar and/or unrelated cultural aspects.

• Cognitive Complexity: Assessment tasks should reflect the presence of higher cognitive skills

and elicit the thinking process used by experts to solve complex problems in their fields.

• Meaningfulness: The assessment should have a significant value for both teachers and learners.

A possible way to increase meaningfulness is to include learners in the development of the

assessment process.

• Fitness for Self-Assessment: The assessment assists in self-regulated learning by making clear

what the criterion are, by showing weaknesses and by stimulating reflection on the learning

process.

• Educational Consequences: How do the intended and unintended, positive and negative effects

of the assessment cause teachers and learners to view the goals of education and adjust their

learning activities accordingly? e.g. washback; 2.

• Costs & Efficiencies: The time and resources needed to develop and carry out the assessment

are justified by the positive effects, such as improvements in learning and teaching.
2A prevailing phenomena in education. Where "what is assessed becomes what is valued, which becomes what is

taught" [CC04].

101



8.3 Measuring Criteria for Assessment

8.3.1 Why Rigorously Evaluate Rubrics

As the previous section demonstrates, there are different viewpoints when it comes to quality

assessment standards. Arter asserts that the validation process should be reserved for situations

in which quality criteria for important learning targets are somewhat fuzzy and can benefit from

a comprehensive approach [Art00]. Such a heavyweight process might seem overkill for simple

high school scoring rubrics, however, the number of new K-12 computer science teachers with

non-computing backgrounds is growing exponentially. With such unprecedented growth, comes

vastly different levels of teacher preparedness.

If we hope to get widespread adoption of newly formed K-12 computing courses through-

out the United States, including in rural areas further away from university hubs, we need well-

complimented courses with rich support materials so that active teachers can pick and choose how

to make the classes theirs. Ni’s 2009 study showed that for teachers who adopted computing curric-

ula, over 50% modified existing courses to use some of their content; only 7% used the full complete

curriculum [Ni09]. A national standard of fully vetted modules gives more options for teachers to

pick and choose assignments for blended courses. When teachers feel a sense of ownership over

their course curricula, they are more likely to persist in teaching the course and to workshop with

others to continually improve their course for their own specific needs and students [Ni09].

8.3.2 How to Evaluate Rubrics Meaningfully

In the classical sense of educational testing, reliability and validity are key players. Messick worked

with the AERA and other educational stakeholders to integrate his new construct validity into

national assessment standards for student education. Although these standards are important for

the high-stakes testing that came out of the No Child Left Behind era [Bus01], these standards are

difficult to apply to new forms of problem-based assessments with open-ended solutions.

The psychometric standards of high-stakes testing to not meet the cost-effective needs and

utility of rubrics. The primary goals of the rubrics we are developing are friendliness and clarity for

new CS teachers. These low-stakes assessments are designed as building blocks for student learning

and should be evaluated as such. The flexibility of the Wheel of Competency Assessment allows us

to evaluate certain aspects of reliability and validity while still maintaining a broader, more practical

scope for scoring rubric evaluation.

102



8.4 Aligning Research to the Wheel of Competency Assessment

In a previous study [Cat18], we created a hybrid process to quickly create rubrics for the Beauty &

Joy of Computing (BJC), a variation of AP Computer Science Principles. In this analysis, we test our

hybrid rubrics against the Wheel of Competency Assessment to estimate a measure of quality for

our rubrics. There are 12 possible quality metrics; we however, will only be looking at 11 of them. As

the scope of this research has focused primarily on teachers, we have not explored student use of the

rubrics for fitness for self-assessment and will be leaving that research for future work. A summary

of the evidence type and participants for each criteria is visible in Table 8.1. The remainder of this

section provides descriptions for the evidence as to how our system of rubrics meets the 11 other

quality criteria as outlined by Baartman. These descriptions are recapped in Tables 8.2, 8.3, and 8.4.

Table 8.1 A summary of processes for meeting Wheel of Competency Criteria

Criteria Evidence Type Participants
1 Fitness for Purpose Delphi (Chapter 5) Master Teachers
2 Comparability Analytic Rubrics N/A
3 Acceptability 2017 User Study BJC Professional Development Atten-

dees
4 Transparency Chapter 5 Master Teachers and novice under-

grads
5 Reproducibility of Decisions Chapters 4 and 5 Master Teachers and novice under-

grads
6 Authenticity Delphi (Chapter 5) SIGCSE Members
7 Fairness Chapter 4 Novice BJC Teacher, Undergrad Ex-

perts
8 Cognitive Complexity Chapter 4 Novice BJC Teacher, Undergrad Ex-

perts
9 Meaningfulness Literature Review N/A
10 Fitness for Self-Assessment Not Tested N/A
11 Costs & Efficiencies Chapter 6 undergrads
12 Educational Consequences Literature Review N/A

Fitness for purpose The rubrics we developed were created using a systematic process [Cat18]

guided by initial findings in [CB17]. During these processes we solicited CS Principles experts to

identify the best fitting and most important learning objectives for each lab activity. These learning

objectives were derived directly from the AP CS Principles Course Framework [Col17] on which each

103



CS Principles course is based. By using group decision techniques, we have reasonably identified the

most appropriate learning targets to be used in each rubric demonstrating their fitness for purpose.

Comparability In the original context of Comparability, as described by Uhlenbeck, beginner

teachers were being assessed on their ability to teach English as a Foreign Language (EFL) [Uhl02].

In that context, Uhlenbeck suggested guidelines for consistency of scoring portfolios, written exams,

and simulations without necessarily using rubrics. Uhlenbeck suggested Candidates’ responses

should be scored consistently and according to the same criteria. Scoring should proceed system-

atically and the steps assessors take to reach a judgment should be open to inspection by others

[Uhl02]. Each of these questions regarding comparability are addressed with the specification of the

lab activities and clear performance criteria are described in each of the analytical rubrics.

Acceptability After introducing our suite of rubrics to Beauty and Joy of Computing teachers, we

found primarily positive feedback. The only negative feedback received during any pilots pertained

to minor spelling errors or inconsistent punctuation. When given the rubrics, teachers immediately

felt comfortable grading with them. This was demonstrated during a series of summer 2017 BJC

professional development workshops where teachers graded and submitted a total of 88 eCard and

99 Shopping List programming projects using our rubrics. Due to the lack of negative feedback and

the ability of nearly 100 new BJC teachers to use the rubrics, we argue that our rubrics have been

accepted by the relevant community.

Transparency Pairing well with Acceptability is Transparency, which relates to the clarity and un-

derstandability of the rubrics to participants. Hambleton suggests a good indication of transparency

is “to check whether learners can judge themselves and other learners as accurately as trained

assessors” [Ham96]. In our Spring 2016 study, we compared grading by an expert to that done by a

novice learner. We compared grading abilities using both these newly formed learning-based rubrics,

and previously developed task-based rubrics. We found that there was significantly greater accuracy

in grading when using the learning-based rubrics. In addition to running the pilots with our summer

2017 PD teachers, the Spring 2016 study provides evidence for the clarity and understandability of

the rubrics.

Reproducibility of decisions Reproducibility has been a primary focus of our past studies [Cat16;

CB17]. This criteria does not require judgments to be objective, however we believe our scores

generally are. In both Cateté 2016 and Cateté 2017 we have shown inter-rater reliability kappa values

over 0.7. The statistics show that between experienced graders (kappa .79), as well as between novice

and experienced graders (kappa .78) projects receive consistent scores. Furthermore, our Spring

2017 study with active CS Principles teachers in their first two years of teaching a computing course

showed inter-correlation agreements of .74 for difficult assignments up to .87 for standard difficulty

assignments. The consistency of scoring across time and graders indicates reproducibility of the

104



Table 8.2 Evidence for Wheel of Competency Assessment pt. I: Term, Definition, Evidence

Fitness for Purpose Comparability Acceptability Transparency
Assessment should
align with the goal
of the learning pro-
cess and with the
instruction given

Scoring should occur
in a consistent way us-
ing the same criteria
for all learners

Assessment has to be
accepted by those in
the profession (stake-
holders)

Assessment is clear
and understandable
to all participants
(learners can judge
as well as trained
assessors)

Rubrics designed
around labs, CSP
framework, and CT

Structure of analytic
rubric provides con-
sistent criteria

Multiply vetted and
used by CSP teachers;
Adopted by BJC EdX
team

Shown in Study 3
comparing expert and
novice graders

scoring decisions made based on the rubrics.

Authenticity In addition to the authenticity of the assessment criteria, there are four other

dimensions of authenticity that relate to the process of completing the task: the assessment task,

the physical context, the social context, and the assessment form [Gul04]. The assessment task

for each lab is to ‘complete a programming task, turn in the final program to be graded,’ and the

assessment form is our learning-based rubric. The physical and social contexts vary across class

implementations. Some students take the course online, while others complete labs in pairs. This

variety across classroom implementations echoes the variance in professional work environments.

We argue that the rubrics are authentic because the assessment tasks (labs) were designed by CS

professors, and the assessment forms (rubrics) were designed an expert panel of those familiar with

the CS Principles course, and the computer science in universities and in industry. Since the chosen

assessment criteria echo the needed competencies for future CS education and careers, they meet

the authenticity criterion.

Fairness When examining the criterion of Fairness, we seek to minimize bias shown towards

certain groups of learners and to reflect the knowledge, skills, and attitudes of the competencies

at stake. We’ve vetted the rubrics for comprehension of category descriptions with HS teachers,

university professors, and novice computing students. In Chapter 5, we have found that both high

school honors computing students and non-computing majors in college receive similar grades

for similarly demonstrated evidence of CT. Additionally, we found that by using evidence of CT

learning objectives instead of task-based outcomes, students were equally judged on the beginner

knowledge giving novice programmer students the chance to be successful without having to be

masters at efficient programming. The rubrics themselves use learning objectives as the basis for

105



Table 8.3 Evidence for Wheel of Competency Assessment pt. II: Term, Definition, Evidence

Reproducibility of De-
cisions

Authenticity Fairness Cognitive Complexity

Decisions about the
learner are made accu-
rately and do not de-
pend on the assessors
or situation

The assessment eval-
uates competencies
needed in the future
workplace

The assessment
should only reflect
the knowledge, skills
& attitudes of the
competency at stake

Assessment tasks
should reflect the
presence of higher
cognitive skills to
solve complex prob-
lems in field

Study 2, 3, and 5
address reliability of
rubric across grader
types

Group decision tech-
niques in Study 3 and
4 vetted both impor-
tance and relatedness
of the Learning Objec-
tives

Study 2, auto-grader
vs. learning-based
rubrics, shows drop
in bias towards expert
traits, skills

BJC assignments cre-
ated to reflect compu-
tational thinking skills
needed in future

grading and limit the effects of irrelevant variance. As CS Principles is marketed as a creative course,

the rubrics are designed to be fair and allow variance in content of student submissions while still

measuring quality.

Cognitive Complexity The cognitive complexity criterion helps us address a concern we had with

using task-based rubrics to grade novice student programs. Task-based rubrics measure whether

the submitted program exactly meets requirements, and rewarded efficiency, but did not allow for a

fine-grained analysis of the learning objectives the students may have demonstrated successfully in

their programs. The initial task-based rubrics provided a good base for teachers to check student

work, however, differences in implementation and algorithmic choice were not registered with

the task-based rubric. The new rubrics grew from an expansion of the logic category of the initial

rubric format, so that teachers could more easily identify evidence of learning goals in student

assignments. The new learning-based rubric categories often focus on algorithmic design, logic

flow and other aspects of computational thinking. By basing our assessment measures on more

abstract concepts as opposed to final product output, we are ensuring that our assessment can

better reflect the cognitive and algorithmic decisions made by students without losing artificial

points, thus capturing a greater level of cognitive complexity than the previous rubrics.

Meaningfulness This is another category where we focus on the teacher perspective over the

student one. In the initial implementation of CS Principles as an NCSU college course (CSC 200),

student lab assignments were graded simply as pass or fail. There was no metric available to the

numerous TAs about how well a student completed the task. As very few of the TAs had a computing

106



background, projects that were later rated low-quality by our system, were initially given scores

of 100. This lack of valuable finer-grained grading feedback limited both students and professors

in understanding how students were progressing in the course. The learning-based rubrics can

help teachers have more confidence in whether or not their lessons are promoting student learning.

Increased confidence in teaching the course correlates with higher retention rates for those teachers,

and consequently increases adoption rates by their community peers as the new course seems less

intimidating [Ni09].

Costs & efficiencies Using traditional rubrics as a support tool for beginning CS Principles teach-

ers is very cost effective. Unlike electronic systems and new software platforms, teachers are very

comfortable with rubrics. School administration is also on board with teachers using rubrics. Our

rubrics address efficiencies by having support from key players in the K-12 school system, allowing

us to more easily and quickly provide needed support to novice teachers. We also want rubrics to

be created by knowledgeable persons who are familiar with both computing and the CS Principles

course. Gathering together the Master teachers is costly in terms of their limited time commitment

and transportation funding needs. Compared to the geo-separated Delphi method for rubric de-

velopment, NGT is a much quicker process [Cat18]. Similarly, our past studies have shown that

well-trained computing undergrads are just as reliable as our active BJC teachers [Cat16], thus our

rubric creation process is more cost effective than a geo-separated Delphi or an expensive in-person

meeting of Master teachers. Although this process is not as efficient as a single well-trained teacher

creating personal rubrics for their own classroom, it does help address the widespread lack of

computing experience in our beginning teachers. As teachers become more comfortable with the

content, they will have a foundation on which to base their future materials.

Educational Consequences Although this facet of quality has not been fully explored in relation to

our study, based on similar research, we can expect to see positive educational outcomes. According

to work by Ericson, successful teachers use assessment to determine student misconceptions, give

explanatory feedback, and have students use grading rubrics to understand how open-ended prob-

lems are graded [Eri14]. Students who have the scoring metrics made available to them beforehand

are provided clear goals for their work and are more inclined to learn the assessed materials [Art00].

Additionally, as these rubrics are formative they help faculty recognize where students are struggling

and to address problems immediately, as compared to the final AP exams. These rubrics provide a

base of understanding for intended learning goals of the unit so that teachers can better reflect on

their teachings and adapt as needed to focus on the essential knowledge [JS07]

107



Table 8.4 Evidence for Wheel of Competency Assessment pt. III: Term, Definition, Evidence

Meaningfulness Fitness for Self-
Assessment

Costs & Efficiencies Educational Conse-
quences

The assessment
should have a signif-
icant value for both
teachers and learners

Assessment assists
in self-regulated
learning; makes the
criterion clear, shows
weaknesses and stim-
ulates reflection on
the learning process

Time and resources
needed are justified
by positive effects: im-
provements in learn-
ing & teaching

How does the assess-
ment cause teachers &
learners to adjust their
learning activities?

Meaningful feedback;
More confidence as-
sessing student learn-
ing, teaching [Ni09]

Not Tested - Out of
Scope

Study 5, modified
NGT method greatly
reduces prior costs &
time requirements

Determine student
misconceptions;
student preparation;
increased inclination
to practice desired
goals; teaching aide
[Eri14; Art00; JS07]

8.5 Discussion

In this study, we set out to validate the CS Principles/BJC learning-based rubrics using principles

from the education community. After investigating validity as three separate categories [Mes80], and

then again as 6 aspects of a single construct validity [Mes96; Ass99], we decided that the best route

for assessing the quality of our rubrics was actually the Wheel of Competency Assessment [Baa06].

Unlike the prior two strategies that were designed for large-scale standardized testing, the Wheel of

Competency Assessment framework was developed for complex competency assessment programs

that take on various forms of implementation. The quality criteria presented in the framework still

measure aspects of the prior validity definitions, but also take on new measurements for practical

use in lower-stakes classroom evaluations.

When comparing the suite of scoring rubrics and their development against the Wheel of

Competency Assessment, our findings provide support to satisfactorily meeting 10 out of the 12

criterion including the 5 core criteria that Baartman suggests must be met before considering criteria

in the outer layers [Baa06]. There are two criteria that we have not fully tested. These criteria are the

fitness for student self-assessment and the student aspect of educational consequences. Otherwise,

we demonstrate consistency, fairness, authenticity, and each of the other quality criteria supporting

the validity of these rubrics. The lack of student reporting is due to our targeted examination of

108



teachers who are new to computing. There are a large number of K-12 teachers being mobilized to

teach either a new computing course or to add computing into their existing course. These teachers

do not always have a full understanding of the materials they are teaching and what the outcomes

should be. Our main purpose was to provide support to the curriculum such that it could be picked

up by a beginner teacher and used in the classroom more confidently.

After releasing our rubrics we have found the number of teacher requests for assessments have

declined. Our Summer 2017 study demonstrated that teachers were able to program and grade

assignments with the rubrics as support. We anecdotally observed that providing the rubrics helped

teachers feel more confident in their ability to perform the necessary duties in the classroom. Ni’s

2009 study on factors influencing adoption, shows that when teachers are more confident in their

ability to teach the curriculum, they are more likely to support the spread and adoption of the course

[Ni09], which is critical to the systematic acceptance of computing curricula in the K-12 classroom.

There are limitations to this work, as some evidence relies on the opinions of a few key persons.

Both our original Delphi groups and our hybrid NGT team were comprised of selected individuals.

These groups had a large effect on the outcome of the rubrics developed. Furthermore, although we

performed reliability testing with three separate groups, this was still a small sample size. We believe

that due to the low-stakes nature of the rubrics, the sampling sizes will not impair the overall goal

and outcomes of this endeavor.

Other limitations include the use of self-reported feedback from the teachers in professional

development. Research has shown that participants want to respond in a way that appeases re-

searchers by making themselves look as good as possible. Thus, they tend to under-report behaviors

deemed inappropriate by researchers or other observers, and they tend to over-report behaviors

viewed as appropriate [DGV02]. There could be several reasons for this in our study, including the

perceived opportunity for more funding, the desire for more resources, or other outside influences.

8.6 Conclusions

The lack of qualified computer scientists available to fill positions in the tech industry is parallel to a

lack of qualified computer science teachers at the K-12 level. With both parents and administration

pushing the need to teach students the necessary skills for 21st century technology jobs [Goo16],

these teachers need both professional development as well as complete curriculum from which to

pick and choose modules in order to gain confidence in teaching computer science content and to

establish a sense of ownership of the course. As handing over lessons without meaningful ways to

assess student learning can lead to teacher confusion, finding a systematic way to quickly generate

a full suite of rubrics for new computing courses is imperative to the adoption of computational

109



thinking in K-12 classrooms.

To evaluate our learning-based rubrics designed for a blocks-based Computer Science Principles

course, we aligned our process to the Wheel of Competency Assessment. Using the wheel as a

measurement of quality, we found that our well-defined and task-specific rubrics were able to meet

10 out of twelve criteria, and met the teacher perspective on an 11th of the criteria for quality problem

based assessments. This combination of findings provides support that the developed rubrics

demonstrate key aspects of reliability, validity, and other important concepts such as meaningfulness

and acceptability.

The standard validity and reliability metrics used for classical high stakes testing are not appro-

priate for use for formative feedback and assessment in new computing classes taught by computing

novices. Instead, Baartman’s Wheel of of Competency Assessment should be used for low-stakes

assessments especially rubrics; because of ease of use and understanding by non-education re-

searchers or statisticians. Baartman’s wheel also acts as a tool for checking alignment between the

intentions of the assignment and how it is assessed. We have therefore applied the Wheel of Com-

petency Assessment model to obtain measures of acceptance and practicality for our rubrics. The

rubrics were developed using a modified Nominal Group Technique with trained undergrads as a

cost-effective alternative to the having well-versed computing teachers leading new K-12 computing

courses. This process is not as ideal as having an abundance of already trained K-12 computing

teachers available to create brand new materials and assessments. However, the Wheel of Com-

petency demonstrates that the created rubrics are suitable for low-stakes assessments in AP CS

Principles. This is particularly important, because not only are the teachers new to computing, but

there are very few rubrics made for novice programming that are aligned to learning objectives.

Taken together, these findings suggest a role for our process in promoting the rapid produc-

tion of reliable and valid rubrics as formative support for beginner computing teachers in the

frequently changing landscape of K-12 computing education while maintaining a high level of

cost-effectiveness with measurably good outcomes.

8.7 Future Work

As the current system hasn’t been vetted for student fitness of self-assessment or educational conse-

quence from the student’s perspective, these would be useful avenues to round out the evaluations

using the Wheel of Competency Analysis. Our hypotheses are that (1) the rubrics allow students to

self-assess through understandable language and meaning, and (2) that students using the rubrics

as a guideline would have a higher presence of the requested learning outcomes expressed in code

artifacts demonstrating positive educational consequences.

110



In order to assess the fitness for self-assessment and the educational consequences for student

use of the rubrics it is advised to run a study with students from active CS Principles classrooms. In

this study, one classroom set of students would be given the rubric at the onset of the lab activity to

use as a guide for completion, the second group would be given the rubric after the lab assignment.

Both groups would be tasked to give themselves an expected grade based-on the rubric before

turning in the assignment to the instructor. In order to minimize demand characteristics, or ’the

good-subject’ effect where participants give the answers they think researchers are looking for

[NM08], students will be given 2 points of extra credit for estimating their grade correctly (within 1

point of final grade). Furthermore, a sample student interviews would be conducted throughout

the programming activity. Investigators would focus on questions pertaining to what students think

the desired outcomes are and how they would go about achieving those. Furthermore, follow-up

interviews would be conducted with samples of students who both estimated their grades correctly

and with those who were not able to estimate their grade well.

In order to answer hypothesis 1, we would examine students’ expected vs. actual grade, as well

as statements made in student interviews. The distribution of students’ expected grades to actual

grades would provide empirical evidence to students’ ability to self-assess. The interview statements

would provide richer context to the analysis, especially for those not meeting our hypothesis. Student

insights on why they might have misjudged their projects could allow us to make necessary revisions

to the final rubrics. Furthermore, to answer hypothesis 2, we would examine differences between

groups of how well students completed the task. We would expect that students using the rubrics

as a guideline would have a higher presence of the requested learning outcomes expressed in

code artifacts than those who were not given access to the rubrics beforehand. The differences in

frequency of expected learning outcomes would provide evidence to the educational consequences

aspect of WoCA. To further investigate this aspect, we need to identify the unexpected consequences

of rubric use. This can be done through the structured open-ended questions in the student follow-

up interviews as well as through classroom observations while students are completing the labs.

Through completion of this final study, a complete analysis of quality using the Wheel of Competency

Assessment can be performed.

111



CHAPTER

9

CONCLUSIONS

9.1 Review

In this chapter, I summarize how the work in the previous chapters contributed to validating my

hypotheses and answering the research questions outlined in the introduction. To recap, my research

questions and hypotheses are as follows:

9.2 Research Questions

RQ1 How can we help teachers better understand learning objectives for labs and identify whether

they are achieved in student artifacts?

RQ2 How can we modify educational psychology methods to meet our needs for creating a large

set of rubrics for classroom settings?

RQ3 How well do teachers identify computational thinking in student artifacts using task-based

and learning-based rubrics?

112



9.3 Hypotheses

H1 We can use the Delphi method to create learning-based rubrics that perform better than

traditional task-based rubrics at helping teachers grade assignments meaningfully.

H2 Use of the Delphi method to create rubrics will lead to sufficient levels of inter-rater reliability

among novice graders on low-stakes assessments for programming lab assignments.

H3 We can use a modified NGT approach to efficiently and quickly produce a full suite of quality

assured rubrics for BJC lab assignments.

H4 Learning-based rubrics will help support beginning CS Principles teachers consistently assess

important computational thinking elements in student code.

H5 We can apply the Wheel of Competency Assessment to show that the created rubrics are

appropriate for low-stakes assessment of CS Principles labs.

Research Question 1

Research question 1 is “How can we help teachers better understand learning objectives for CS

Principles labs and identify whether these learning objectives are achieved in student artifacts?"

In my early investigations, I learned that many teachers did not feel equipped to create their own

rubrics, limiting the quality of feedback they could give to their students. In my pilot study, I created

rubrics based on grading trends in auto-graders for introductory computing courses [Cat16]. I tested

these rubrics by having both an experienced computer science grader and a new CS Principles

grader use the rubrics. I learned that although both graders were able to grade consistently with each

other, there was still room for improvement to expand the learning focus of the rubrics. Research

into rubric design strategies encouraged a redesign of the rubrics from being task oriented to being

learning oriented. However, as the CS Principles labs we were working with did not have learning

objectives explicitly assigned to them, we would need to find a way to identify appropriate learning

objectives. Using the newly-created learning oriented rubrics, teachers were better able to identify

evidence of the learning objectives in student assignments as seen in Chapter 4.

Research Question 2

Research question 2 is “How can we modify education psychology methods to meet our needs

for creating a large set of rubrics for classroom settings?" After implementing both a full scale

113



Delphi study and a modified local Delphi study (Chapter 5), our results followed those of previous

researchers. The panelists were able to systemically agree upon learning objectives for their particular

labs. However, the national Delphi with selected experts was both time and cost prohibitive. The

local Delphi on the other hand, did not accrue direct cost on our end and finished in a very timely

manner. Unfortunately, to replicate the study was not as feasible for each rubric set, as getting the

master teachers together during the school year is difficult. In order to effectively address these

issues, we switched to a Nominal Group Technique approach and utilized trained undergraduate

computer science students as the panel experts (Chapter 6). This both formalized the in-person

procedures and gave us more effective access to qualified panelists. Using our final NGT method

allowed us to create a full set of task-based and learning-based rubrics within a single semester.

When assessing these rubrics for reliability and quality we were also able to establish consistency

between active CS Principles teachers (Chapter 7) and ensure a level of quality using the Wheel of

Competency Assessment (Chapter 8).

Research Question 3

Research question 3 is “How well do teachers identify computational thinking in student artifacts

using task-based and learning-based rubrics?" In our pilot study, the experienced computer science

grader and the novice grader were able to achieve a satisfactory level of inter-rater reliability only

after two rounds of training and revisions to the ambiguity of the initial task-based rubric. When

comparing the task-based rubric to the learning-based rubric however, our novice rater was more

confident in grading with the learning-based rubric and being able to consistently grade student

projects, particularly borderline cases that deviate from the typical solution.

Furthermore, when testing with active CS Principles teachers with <2 years teaching experience

in the course, we were able to identify which aspects of computational thinking they were able to

recognize. Our study in Chapter 7 demonstrated that teachers could recognize concepts such as

abstraction, parameters, mathematical operations, and styling, however ratings in categories like

logic statements and appropriate naming conventions were less consistent. In Chapter 7 we make

recommendations on how to address these issues.

Hypothesis 1

Hypothesis H1 is that “We can use the Delphi method to create learning-based rubrics that perform

better than traditional task-based rubrics at helping teachers grade assignments meaningfully." H1

is supported by work in Chapters 3 and 4. This work shows that raters using both task-based and

114



learning-based rubrics were able to achieve a sufficient level of inter-rater reliability. However, raters

using the task-based rubrics required multiple revisions to the initial rubrics, which did not occur

when raters used the learning-based rubrics. Furthermore, we found that the task-based rubrics,

mirroring traditional CS grading schemes, bias high performing students, giving more credit to

more elegant and efficient solutions, which are not appropriate measures of success for novices.

The learning-based rubrics on the other hand, are grounded in the learning outcomes expected

from each lab, and this means that by simply achieving the list of lab requirements, a student

has demonstrated the intended level of competency for the AP CS Principles course. Therefore

we suggest that learning-based rubrics are better than the task-oriented ones at helping teachers

provide meaningful feedback to beginner computer science students.

Hypothesis 2

Hypothesis H2 is that “Use of the Delphi method to create rubrics will lead to sufficient levels

of inter-rater reliability among novice graders on low-stakes assessments for programming lab

assignments." H2 is supported by work in Chapter 5 where we had both Master teachers and

undergraduate computing novices grade 60+ student code samples using the learning based rubrics.

From this study we found novice raters to achieve a inter-rater reliability measure of .78 to .83 which

matches the Master teacher reliability of .79. Because the novice graders align with Master score and

because each of the reliability estimates are above the commonly accepted satisfactory threshold of

.70 we find this hypothesis to be true.

Hypothesis 3

Hypothesis H3 is that “We can use a modified NGT approach to efficiently and quickly produce a

full suite of quality assured rubrics for BJC lab assignments." Although the Delphi method produced

rigorous quality results, the costs were too high to use this method to mass-produce rubrics for every

BJC lab assignment. We support H3 in Chapters 6 and 7 where we streamline the rubric creation

process using a team of ’almost experts’ to generate 66 rubrics (32 learning-based and 34 task-based)

within the course of ten 60-90 minute sessions. This greatly surpasses the 11-week time span to carry

out our original more traditional Delphi method which only produced a single rubric. To assess

the quality of these rubrics we tested them with active CS Principles teachers and found them to

have the same level of consistency in inter-rater reliability, ICC = .75 for both teachers and STEM

education students, and ICC of up to .89 for just teachers on moderate level assignments. Therefore,

we find our modified NGT to be a suitable replacement for the previously used Delphi.

115



Hypothesis 4

Hypothesis H4 is that “Learning-based rubrics will help support beginning CS Principles teachers

consistently assess important computational thinking elements in student code." H4 is supported by

work in Chapter 7 where we assessed the reliability of the new rubrics by having active CS Principles

teachers identify student code areas that influenced their grading decisions for each category of the

rubrics. We found that teachers were able to identify computational evidence of abstraction and

stylizing which are less defined terms, in addition to the expected parameters and mathematical

operations. We also concluded that there is still room for improvement – for example, participants

did not consistently identify regions for appropriate naming. This concept requires teachers to

understand the intentions of the variables and custom blocks to determine whether they are well

named. As code deviates from a typical solution, by either being more creative or less detailed, the

teachers were less apt to understand the underlying programming logic. We believe that although

the rubrics help significantly in teacher grading, additional resources such as annotated solution

files might also be beneficial.

Hypothesis 5

Hypothesis H5 is that “We can apply the Wheel of Competency Assessment to show that the created

rubrics are appropriate for low-stakes assessment of CS Principles labs." H5 is supported by work in

Chapter 8 where we align our rubrics and creation process to the Wheel of Competency Assessment

directly. This work shows that we were able to provide sufficient evidence for 10 out of 12 of the

quality criteria and met the teacher perspective on an 11th of the criteria for quality problem

based assessments. The remaining 1.5 aspects that we did not test were the fitness for student

self-assessment and the student perspective for educational consequences. These were left out

as the primary focus of this research is on teacher support; according to our comparison using

Baartman’s wheel, we have accomplished.

9.4 Contributions

In conclusion, this research presents the following contributions:

1. I conducted the first application of the Delphi Method to create content-validated rubrics

for a K-12 computing course. Using these methods we were able to gain insights on stream-

lining a robust process for creating a large quantity of quality rubrics, which benefits the

116



rapidly expanding CS Principles program and can be applied to other newly developed novice

computing courses.

2. I redesigned the rubric creation process to be more cost-effective and thus feasible to replicate

for use in real-life applications and school settings. This allows for quick distribution of

rubrics on rapidly changing courses. As computing trickles down the K-12 pipeline, we will be

presented with more teachers from diverse backgrounds and course content that will have to

adjust as students in lower grades become more experienced. Thus, being able to generate

new reliable rubrics quickly and so that they support novice teachers will be beneficial.

3. I proved that the rubrics created with the new modified NGT process and almost-experts are

as reliable as the initial Delphi generated rubrics. As our modified NGT method was more cost-

effective and efficient due to using surrogate experts, it was critical to ensure that they held

up to the same standards as the initial Delphi rubrics. Ensuring a level of quality assessment

to our rubrics is important for their adoption by teachers.

4. I devised a novel application of the Baartman’s Wheel of Competency Assessment to establish

a high level of validity, value and acceptability of the rubrics. By aligning our rubrics to the

Wheel of Assessment we were able evaluate whether these rubrics met their intended goals.

As we used new tools and open-ended processes to assess student work, it is important to

evaluate their appropriateness for use by new CS Principles teachers.

5. I led a junior research team composed of upper classification computer science undergradu-

ates in generating 32 Beauty & Joy of Computing rubrics designed to measure implementation

of learning objectives in student lab assignments. This is the first such system, as well as the

first such system specifically designed for beginning teachers.

9.5 Future Work

In terms of directions for future research in helping teachers manage efficient and effective grading

for their courses, further work could involve a deeper analysis of automating computation thinking

identification in code so that assignments can be quickly graded by AI and then reviewed by a

teacher for accuracy. Another possible area of future development that goes along with this would

be to develop or integrate with a dashboard system that allows teachers to quickly grade Snap

programming environments using an online environment. Some of our BJC teachers are teaching

course loads with 150 students, and although this is common in universities with plenty of teaching

assistants available, at the K-12 level there just are not enough resources. We found Gradescope

117



to be very useful for our tagging and analysis, however the setup process and final metrics were

still crude. With a more streamlined process for code analysis, running studies on both student

and teacher identification of computational thinking will prove easier. Furthermore, the current

system hasn’t been vetted for student fitness of self-assessment or educational consequence from

the student’s perspective. These would be useful avenues to round out the evaluations using the

Wheel of Competency Analysis as outlined in Chapter 8.

118



BIBLIOGRAPHY

[AS96] Abelson, H. & Sussman, G. J. Structure and Interpretation of Computer Programs. 2nd.
Cambridge, MA, USA: MIT Press, 1996.

[ACM15] ACM. “Special Section: The Role of Programming in a Non-Major, CS Course”. ACM
Inroads 6.1 (2015), pp. 42–62.

[AW11] Adams, W. K. & Wieman, C. E. “Development and validation of instruments to measure
learning of expert-like thinking”. International Journal of Science Education 33.9 (2011),
pp. 1289–1312.

[AZ96] Adler, M. & Ziglio, E. Gazing into the oracle: The Delphi method and its application to
social policy and public health. Jessica Kingsley Publishers, 1996.

[Aho12] Aho, A. V. “Computation and computational thinking”. The Computer Journal 55.7
(2012), pp. 832–835.

[AK09] Ahoniemi, T. & Karavirta, V. “Analyzing the Use of a Rubric-based Grading Tool”. Pro-
ceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology in
Computer Science Education. ITiCSE ’09. New York, NY, USA: ACM, 2009, pp. 333–337.

[Art00] Arter, J. “Rubrics, Scoring Guides, and Performance Criteria: Classroom Tools for As-
sessing and Improving Student Learning.” (2000).

[Ass99] Association, A. E. R. et al. Standards for educational and psychological testing. American
Educational Research Association, 1999.

[Baa06] Baartman, L. K. et al. “The wheel of competency assessment: Presenting quality criteria
for competency assessment programs”. Studies in Educational Evaluation 32.2 (2006),
pp. 153–170.

[Bak96] Baker, E. L. et al. “Dimensionality and generalizability of domain-independent perfor-
mance assessments”. The Journal of Educational Research 89.4 (1996), pp. 197–205.

[Bar84] Bardecki, M. J. “Participants’ response to the Delphi method: An attitudinal perspective”.
Technological Forecasting and social change 25.3 (1984), pp. 281–292.

[Bar16] Barnes, T. et al. “Scaling Up for CS10K: Teaching and Supporting New Computer Science
High School Teachers”. Proc. 47th ACM Tech. Symp. on CS Ed. SIGCSE ’16. Memphis,
Tennessee, USA: ACM, 2016, pp. 720–720.

[BS11] Barr, V. & Stephenson, C. “Bringing Computational Thinking to K-12”. ACM Inroads
(2011), pp. 48–54.

119



[Bec03] Becker, K. “Grading programming assignments using rubrics”. ACM SIGCSE Bulletin.
Vol. 35. 3. ACM. 2003, pp. 253–253.

[Ben15] Bender, E. et al. “Identifying and formulating teachers’ beliefs and motivational orien-
tations for computer science teacher education”. Studies in Higher Education (2015),
pp. 1–16.

[BD16] Blaheta, D. & Decker, A. “Rubricking Like a Boss: Writing and Using Rubrics For Faster,
Fairer Grading of Student Assignments (Abstract Only)”. Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. SIGCSE ’16. New York, NY,
USA: ACM, 2016, pp. 715–716.

[Bos02] Boston, C. Understanding Scoring Rubrics: A Guide for Teachers. ERIC, 2002.

[BR12] Brennan, K. & Resnick, M. “New frameworks for studying and assessing the development
of computational thinking”. Proceedings of the 2012 annual meeting of the American
Educational Research Association, Vancouver, Canada. 2012.

[Bro13] Brookhart, S. M. How to create and use rubrics for formative assessment and grading.
ASCD, 2013.

[Bro79] Brooks, K. W. “Delphi technique: Expanding applications.” North Central Association
Quarterly 53.3 (1979), pp. 377–85.

[Bus01] Bush, G. W. “No Child Left Behind.” (2001).

[Cab01] Cabaniss, K. “Counseling and Computer Technology in the New Millennium–An Internet
Delphi Study”. PhD thesis. 2001.

[CF59] Campbell, D. T. & Fiske, D. W. “Convergent and discriminant validation by the multitrait-
multimethod matrix.” Psychological bulletin 56.2 (1959), p. 81.

[Can15] Canterbury, N. University of. CS Unplugged: Computer Science without a Computer.
web. url=csunplugged.org. 2015.

[Cat18] Cateté, V. “A Streamlined Approach to the Systematic Creation of Rubrics for Computer
Science Principles”. Proceedings of the 2018 ACM SIGCSE Technical Symposium on
Computer Science Education. SIGCSE ’18. New York, NY, USA: ACM, 2018.

[CB17] Cateté, V. & Barnes, T. “Application of the Delphi Method in Computer Science Prin-
ciples Rubric Creation”. Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’17. New York, NY, USA: ACM, 2017,
pp. 164–169.

120



[Cat16] Cateté, V. et al. “Developing a Rubric for a Creative CS Principles Lab”. Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer Science Education.
ITiCSE ’16. New York, NY, USA: ACM, 2016, pp. 290–295.

[Cec09] Ceci, S. J. et al. “Women’s underrepresentation in science: sociocultural and biological
considerations.” Psychological bulletin 135.2 (2009), p. 218.

[CC04] Cheng, L. & Curtis, A. “Washback or backwash: A review of the impact of testing on
teaching and learning”. Washback in language testing: Research contexts and methods
(2004), pp. 3–17.

[Cic94] Cicchetti, D. V. “Guidelines, criteria, and rules of thumb for evaluating normed and
standardized assessment instruments in psychology.” Psychological assessment 6.4
(1994), p. 284.

[Cla11] Clayton, S. Microsoft Research: How fighting email spam is helping the search for an
HIV vaccine @ONLINE. 2011.

[Col97] College Board. AP Data - Archived Data. web. 1997-2013.

[Col14] College Board. “AP Computer Science Principles Curriculum Framework”. AP Program
(2014).

[Col15] College Board. Advances in AP: AP Computer Science Principles. web. 2015.

[Col17] College Board. Additional Curricula and Pedagogical Support - Advances in AP - The
College Board. 2017. URL: https://advancesinap.collegeboard.org/stem/
computer-science-principles/curricula-pedagogical-support.

[Cod] Computer Science Principles | Code.org. 2017. URL: https://code.org/educate/
csp.

[CG65] Cronbach, L. J. & Gleser, G. C. “Psychological tests and personnel decisions.” (1965).

[CM01] Crouch, C. H. & Mazur, E. “Peer instruction: Ten years of experience and results”. Amer-
ican Journal of Physics 69.9 (2001), pp. 970–977.

[CST08] CSTA Tacher Certification Task Force. Ensuring Exemplary Teaching in an Essential
Discipline: Addressing the Crisis in Computer Science Teacher Certification. Tech. rep.
New York: Computer Science Teachers Association, 2008.

[Cun14] Cuny, J. et al. “CS Principles Professional Development: Only 9,500 to Go!” Proceedings
of the 45th ACM Technical Symposium on Computer Science Education. SIGCSE ’14.
New York, NY, USA: ACM, 2014, pp. 543–544.

121

https://advancesinap.collegeboard.org/stem/computer-science-principles/curricula-pedagogical-support
https://advancesinap.collegeboard.org/stem/computer-science-principles/curricula-pedagogical-support
https://code.org/educate/csp
https://code.org/educate/csp


[DH63] Dalkey, N. & Helmer, O. “An Experimental Application of the Delphi Method to the Use
of Experts”. English. Management Science 9.3 (1963). see abstract, pp. 458–467.

[Dan12] Danielsiek, H. et al. “Detecting and Understanding Students’ Misconceptions Related to
Algorithms and Data Structures”. Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education. SIGCSE ’12. New York, NY, USA: ACM, 2012, pp. 21–26.

[Del86] Delbecq, A. et al. Group techniques for program planning: a guide to nominal group
and Delphi processes. Middleton, WI: Green Briar Press, 1986.

[DGV02] Donaldson, S. I. & Grant-Vallone, E. J. “Understanding Self-Report Bias in Organizational
Behavior Research”. Journal of Business and Psychology 17.2 (2002), pp. 245–260.

[Emb83] Embretson, S. “Construct Validity: Construct Representation Versus Nomothetic Span”.
Psychological Bulletin 93.1 (1983), pp. 179–197.

[Eng15] Engineering Online. CSC 216 Programming Concepts - Java. web. 2015.

[Eri14] Ericson, B. J. et al. “Preparing Secondary Computer Science Teachers Through an Itera-
tive Development Process”. Proceedings of the 9th Workshop in Primary and Secondary
Computing Education. WiPSCE ’14. New York, NY, USA: ACM, 2014, pp. 116–119.

[Eug16] Eugene, K. et al. “The Usefulness of Rubrics in Computer Science”. J. Comput. Sci. Coll.
31.4 (2016), pp. 5–20.

[Fit13] Fitzgerald, S. et al. “What are we thinking when we grade programs?” Proceeding of the
44th ACM technical symposium on Computer science education. ACM. 2013, pp. 471–
476.

[Fra13] Franklin, D. et al. “Assessment of Computer Science Learning in a Scratch-based Out-
reach Program”. Proceeding of the 44th ACM Technical Symposium on Computer Sci-
ence Education. SIGCSE ’13. New York, NY, USA: ACM, 2013, pp. 371–376.

[Fri01] Friend, J. G. “A Delphi study to identify the essential tasks and functions for ADA co-
ordinators in public higher education”. PhD thesis. University of Missouri-Columbia,
2001.

[GES10] Gal-Ezer, J. & Stephenson, C. “Computer Science Teacher Preparation is Critical”. ACM
Inroads 1.1 (2010), pp. 61–66.

[Gar11] Garcia, D. et al. “FRABJOUS CS âĂŤ Framing a Rigorous Approach to Beauty and Joy for
Outreach to Underrepresented Students in Computing at Scale”. 2011.

122



[Gla78] Glaser, B. G. Theoretical sensitivity: Advances in the methodology of grounded theory.
Sociology Pr, 1978.

[Gol08] Goldman, K. et al. “Identifying Important and Difficult Concepts in Introductory Com-
puting Courses Using a Delphi Process”. Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. SIGCSE ’08. New York, NY, USA: ACM,
2008, pp. 256–260.

[Gol10] Goldman, K. et al. “Setting the scope of concept inventories for introductory computing
subjects”. ACM Transactions on Computing Education (TOCE) 10.2 (2010), p. 5.

[Gom85] Gomez, C. C. “Emerging Currculua for Computer Science”. English. Copyright - Copy-
right UMI - Dissertations Publishing 1985; Last updated - 2014-01-10; First page - n/a.
PhD thesis. Arizona State University, 1985, 217–217 p.

[Goo14] Goode, J. et al. “Curriculum is not enough: the educational theory and research founda-
tion of the exploring computer science professional development model”. Proceedings
of the 45th ACM technical symposium on Computer science education. ACM. 2014,
pp. 493–498.

[Goo16] Google Inc. & Gallup Inc. Trends in the State of Computer Science in U.S. K-12 Schools.
2016.

[Gra14] Gradescope. Save time grading. 2014.

[GM09] Groth-Marnat, G. Handbook of psychological assessment. John Wiley & Sons, 2009.

[Gul04] Gulikers, J. T. et al. “A five-dimensional framework for authentic assessment”. Educa-
tional technology research and development 52.3 (2004), pp. 67–86.

[Gus73] Gustafson, D. H. et al. “A comparative study of differences in subjective likelihood
estimates made by individuals, interacting groups, Delphi groups, and nominal groups”.
Organizational Behavior and Human Performance 9.2 (1973), pp. 280–291.

[Hak98] Hake, R. R. “Interactive-engagement versus traditional methods: A six-thousand-student
survey of mechanics test data for introductory physics courses”. American journal of
Physics 66.1 (1998), pp. 64–74.

[Ham96] Hambleton, R. K. “Advances in assessment models, methods, and practices”. Handbook
of educational psychology 899925 (1996).

[Har14] Harvey, B. et al. “Snap! (Build Your Own Blocks) (Abstract Only)”. Proceedings of the
45th ACM Technical Symposium on Computer Science Education. SIGCSE ’14. Atlanta,
Georgia, USA: ACM, 2014, pp. 749–749.

123



[HH12] Harvey, N. & Holmes, C. A. “Nominal group technique: An effective method for obtaining
group consensus”. International Journal of Nursing Practice 18.2 (2012), pp. 188–194.

[HH10] Herman, G. L. & Handzik, J. “A preliminary pedagogical comparison study using the
digital logic concept inventory”. Frontiers in Education Conference (FIE), 2010 IEEE.
IEEE. 2010, F1G–1.

[Hes92] Hestenes, D. et al. “Force concept inventory”. The physics teacher 30.3 (1992), pp. 141–
158.

[Hic13] Hicks, A. “BOTS: Harnessing player data and player effort to create and evaluate levels
in a serious game”. Educational Data Mining 2013. 2013.

[JU97] Jackson, D. & Usher, M. “Grading Student Programs Using ASSYST”. SIGCSE Bull. 29.1
(1997), pp. 335–339.

[JS07] Jonsson, A. & Svingby, G. “The use of scoring rubrics: Reliability, validity and educational
consequences”. Educational Research Review 2.2 (2007), pp. 130 –144.

[Jud72] Judd, R. C. “Use of Delphi methods in higher education”. Technological Forecasting
and Social Change 4.2 (1972), pp. 173–186.

[KW14] Karpierz, K. & Wolfman, S. A. “Misconceptions and concept inventory questions for
binary search trees and hash tables”. Proceedings of the 45th ACM technical symposium
on Computer science education. ACM. 2014, pp. 109–114.

[Klo14] Kloser, M. “Identifying a core set of science teaching practices: A delphi expert panel
approach”. Journal of Research in Science Teaching 51.9 (2014), pp. 1185–1217.

[Koh10] Koh, K. H. et al. “Towards the automatic recognition of computational thinking for
adaptive visual language learning”. Visual Languages and Human-Centric Computing
(VL/HCC), 2010 IEEE Symposium on. IEEE. 2010, pp. 59–66.

[Kot13] Kothiyal, A. et al. “Effect of Think-pair-share in a Large CS1 Class: 83% Sustained Engage-
ment”. Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research. ICER ’13. New York, NY, USA: ACM, 2013, pp. 137–144.

[Lec84] Lecklitner, G. L. “Protecting the rights of mental patients: A view of the future”. PhD
thesis. Ohio State University, 1984.

[Len56] Lennon, R. T. “Assumptions underlying the use of content validity”. Educational and
Psychological Measurement 16.3 (1956), pp. 294–304.

124



[LT75] Linstone, H. & Turoff, M. The Delphi method: techniques and applications. Advanced
book program: Addison-Wesley. Reading, MA: Addison-Wesley Pub. Co., Advanced Book
Program, 1975.

[Loe57] Loevinger, J. “Objective tests as instruments of psychological theory”. Psychological
reports 3.3 (1957), pp. 635–694.

[Mac11] Mack, N. C.-G. A Research Study Using the Delphi Method to Define Essential Com-
petencies for a High School Game Art and Design Course Framework at the National
Level. ERIC, 2011.

[Mar08] Margolis, J. Stuck in the Shallow End: Education, Race, and Computing. The MIT Press,
2008.

[Mar91] Martorella, P. H. “Consensus building among social educators: A Delphi study”. Theory
& Research in Social Education 19.1 (1991), pp. 83–94.

[McC03] McCauley, R. “Rubrics as assessment guides”. ACM SIGCSE Bulletin 35.4 (2003), pp. 17–
18.

[McM16] McMillan, S. S. et al. “How to use the nominal group and Delphi techniques”. Interna-
tional Journal of Clinical Pharmacy 38.3 (2016), pp. 655–662.

[Mes96] Messick, S. “Techinical Issues in Large-Scale Performance Assessment”. ERIC, 1996.
Chap. Validity of Performance Assessments.

[Mes80] Messick, S. “Test Validity and the Ethics of Assessment.” American Psychologist 35.11
(1980), pp. 1012–27.

[Mes89] Messick, S. “Validity.” (1989).

[Mod12] Modi, K. et al. “Generation STEM: What Girls Say about Science, Technology, Engineering
and Math”. A Report from the Girl Scout Research Institute. New York, NY: Girl Scouts
of the USA (2012).

[Mor13] Morelli, R. et al. “Teaching the CS Principles Curriculum with App Inventor (Abstract
Only)”. Proceeding of the 44th ACM Technical Symposium on Computer Science Edu-
cation. SIGCSE ’13. Denver, Colorado, USA: ACM, 2013, pp. 762–762.

[Mor15] Morelli, R. et al. “Analyzing Year One of a CS Principles PD Project”. Proceedings of the
46th ACM Technical Symposium on Computer Science Education. SIGCSE ’15. Kansas
City, Missouri, USA: ACM, 2015, pp. 368–373.

125



[Mos03] Moskal, B. M. “Developing Classroom Performance Assessments and Scoring Rubrics-
Part I & II. ERIC Digest.” (2003).

[ML00] Moskal, B. M. & Leydens, J. A. “Scoring rubric development: Validity and reliability”.
Practical assessment, research & evaluation 7.10 (2000), pp. 71–81.

[MJH95a] Murry Jr, J. W. & Hammons, J. O. “Assessing the managerial and leadership ability of
community college administrative personnel”. Community College Journal of Research
and Practice 19.3 (1995), pp. 207–216.

[MJH95b] Murry Jr, J. W. & Hammons, J. O. “Delphi: A versatile methodology for conducting
qualitative research”. The Review of Higher Education 18.4 (1995), pp. 423–436.

[Nat10] National Research Council. “Committee for the Workshops on Computational Thinking:
Report of a Workshop on The Scope and Nature of Computational Thinking” (2010).

[Ni09] Ni, L. “What Makes CS Teachers Change?: Factors Influencing CS Teachers’ Adoption
of Curriculum Innovations”. Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. SIGCSE ’09. New York, NY, USA: ACM, 2009, pp. 544–548.

[NM08] Nichols, A. L. & Maner, J. K. “The good-subject effect: Investigating participant demand
characteristics”. The Journal of general psychology 135.2 (2008), pp. 151–166.

[PV13] Paul, W. & Vahrenhold, J. “Hunting high and low: Instruments to detect misconcep-
tions related to algorithms and data structures”. Proceeding of the 44th ACM technical
symposium on Computer science education. ACM. 2013, pp. 29–34.

[Pil03] Pillay, N. “Developing intelligent programming tutors for novice programmers”. ACM
SIGCSE Bulletin 35.2 (2003), pp. 78–82.

[Por13] Porter, L. et al. “Evaluating student understanding of core concepts in computer archi-
tecture”. Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. ACM. 2013, pp. 279–284.

[Pot04] Potter, M. et al. “The Nominal Group Technique: A useful consensus methodology in
physiotherapy research.” New Zealand Journal of Physiotherapy 32.3 (2004).

[Pow03] Powell, C. “The Delphi technique: myths and realities”. Journal of advanced nursing
41.4 (2003), pp. 376–382.

[Pri15] Price, T. W. et al. “BJC in Action : Comparison of Student Perceptions of a Computer
Science Principles Course”. Proc. of the 1st Annual RESPECT Conference. 2015.

126



[Pri16] Price, T. W. et al. “Lessons Learned from "BJC" CS Principles Professional Development”.
Proc. 47th ACM Tech. Symp. on CS Ed. SIGCSE ’16. Memphis, Tennessee: ACM, 2016,
pp. 467–472.

[RW99] Rowe, G. & Wright, G. “The Delphi technique as a forecasting tool: issues and analysis”.
International journal of forecasting 15.4 (1999), pp. 353–375.

[Sac74] Sackman, H. Delphi assessment: Expert opinion, forecasting, and group process. Tech.
rep. RAND CORP SANTA MONICA CA, 1974.

[SH14] Schmidt, F. L. & Hunter, J. E. Methods of meta-analysis: Correcting error and bias in
research findings. Sage publications, 2014.

[Sch08] Schoenberg, J et al. “Change it up! What girls say about redefining leadership”. New
York, NY: Girl Scouts of the USA (2008).

[Shu70] Shulman, L. S. “Reconstruction of educational research”. Review of Educational Re-
search 40.3 (1970), pp. 371–396.

[Shu86] Shulman, L. S. “Those Who Understand: Knowledge Growth in Teaching”. English.
Educational Researcher 15.2 (1986), pp. 4–14.

[Sku07] Skulmoski, G. J. et al. “The Delphi method for graduate research”. Journal of Inf. Tech.
Ed 6 (2007), p. 1.

[Sny12] Snyder, L. et al. “Computer Science Principles: an analysis”. ACM Inroads 3.2 (2012),
pp. 69–71.

[Ste14] Stegeman, M. et al. “Towards an Empirically Validated Model for Assessment of Code
Quality”. Proceedings of the 14th Koli Calling International Conference on Computing
Education Research. Koli Calling ’14. New York, NY, USA: ACM, 2014, pp. 99–108.

[Ste16] Stegeman, M. et al. “Designing a Rubric for Feedback on Code Quality in Programming
Courses”. Proceedings of the 16th Koli Calling International Conference on Computing
Education Research. Koli Calling ’16. New York, NY, USA: ACM, 2016, pp. 160–164.

[Ste04] Stemler, S. E. “A comparison of consensus, consistency, and measurement approaches
to estimating interrater reliability”. Practical Assessment, Research & Evaluation 9.4
(2004), pp. 1–19.

[SL05] Stevens, D. D. & Levi, A. J. “Introduction to rubrics”. Sterling, VA: Stylus (2005).

[SZ75] Strauss, H. J. & Zeigler, L. H. “The Delphi technique and its uses in social science re-
search”. The Journal of Creative Behavior 9.4 (1975), pp. 253–259.

127



[SS14] Sung, K. & Snyder, L. “A Case of Computer Science Principles with Traditional Text-based
Programming Languages”. J. Comput. Sci. Coll. 30.1 (2014), pp. 161–172.

[Tay14] Taylor, C. et al. “Computer science concept inventories: past and future”. Computer
Science Education 24.4 (2014), pp. 253–276.

[Tei06] Teijlingen, E. van et al. “Delphi method and nominal group technique in family planning
and reproductive health research”. Journal of Family Planning and Reproductive Health
Care 32.4 (2006), pp. 249–252. eprint: http://jfprhc.bmj.com/content/32/4/
249.full.pdf.

[TG10] Tew, A. E. & Guzdial, M. “Developing a Validated Assessment of Fundamental CS1
Concepts”. Proceedings of the 41st ACM Technical Symposium on Computer Science
Education. SIGCSE ’10. New York, NY, USA: ACM, 2010, pp. 97–101.

[TG11] Tew, A. E. & Guzdial, M. “The FCS1: a language independent assessment of CS1 knowl-
edge”. Proceedings of the 42nd ACM technical symposium on Computer science edu-
cation. ACM. 2011, pp. 111–116.

[TDC79] Thomas D. Cook, D. T. C. “Quasi-Experimentation: Design and Analysis Issues for Field
Settings”. Journal of Personality Assessment (1979).

[Tri15] Trinity College. Mobile CS Principles. web. url=mobile-csp.org/resources. 2015.

[Tuc03] Tucker, A. A Model Curriculum for K–12 Computer Science: Final Report of the ACM
K–12 Task Force Curriculum Committee. Tech. rep. ACM Order No.: 104043. New York,
NY, USA: ACM, 2003.

[Tur70] Turoff, M. “The design of a policy Delphi”. Technological forecasting and social change
2.2 (1970), pp. 149–171.

[Uhl02] Uhlenbeck, A. “The development of an assessment procedure for beginning teachers
of English as a foreign language”. Doctoral Thesis. P.O. Box 9555, 2300 RB Leiden, The
Netherlands: Leiden University, 2002.

[Uni14] University of California, Berkeley. Hangman Classic. Online. URL @ http://bjc.berkeley.edu/bjc-
r/cur/programming/projects/hangman/hangman-classic.html. 2014.

[Uni15] University of California, Berkeley. BJC - Beauty and Joy of Computing. 2015. URL: bjc.
berkeley.edu.

[Uni17] University of California, Berkeley. Snap! Build Your Own Blocks. 2017.

[Ute] UTeach CS Principles. 2017. URL: https://cs.uteach.utexas.edu/.

128

http://jfprhc.bmj.com/content/32/4/249.full.pdf
http://jfprhc.bmj.com/content/32/4/249.full.pdf
bjc.berkeley.edu
bjc.berkeley.edu
https://cs.uteach.utexas.edu/


[WS74] Weatherman, R. & Swenson, K. “Delphi technique”. Futurism in education: Methodolo-
gies (1974), pp. 97–114.

[WT14] Webb, K. C. & Taylor, C. “Developing a pre-and post-course concept inventory to gauge
operating systems learning”. Proceedings of the 45th ACM technical symposium on
Computer science education. ACM. 2014, pp. 103–108.

[Wil11] Wilson, C. et al. Running on empty. New York, NY, 2011.

[Win06] Wing, J. M. “Computational Thinking” (2006), pp. 33–35.

[Win97] Winzenried, A. “Delphi Studies: The Value of Expert Opinion Bridging the Gap–Data to
Knowledge.” (1997).

[Wol11] Wolz, U. et al. “Scrape: A tool for visualizing the code of Scratch programs”. Poster at the
42Nd ACM Technical Symposium on Computer Science Education. SIGCSE ’11. Dallas,
TX, USA: ACM, 2011.

[Yad16] Yadav, A. et al. “Measuring Computer Science Pedagogical Content Knowledge: An
Exploratory Analysis of Teaching Vignettes to Measure Teacher Knowledge”. Proceedings
of the 11th Workshop in Primary and Secondary Computing Education. WiPSCE ’16.
New York, NY: ACM, 2016, pp. 92–95.

[Yua16] Yuan, A. et al. “Almost an Expert: The Effects of Rubrics and Expertise on Perceived
Value of Crowdsourced Design Critiques”. Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. CSCW ’16. New York, NY,
USA: ACM, 2016, pp. 1005–1017.

[Zel00] Zeller, A. “Making Students Read and Review Code”. SIGCSE Bull. 32.3 (2000), pp. 89–92.

129



APPENDICES

130



APPENDIX

A

RESOURCES

A.1 Beauty and Joy of Computing Lesson Plans

pg. 132 Brick Wall Lab + Rubric

pg. 137 Hangman Lab + Rubric

pg. 140 Binary Conversion Lab + Rubric

pg. 143 C-Curve Lab + Rubric

pg. 148 eCard Lab + Rubric Training Survey

pg. 152 Shopping List Lab + Rubric Training Survey

pg. 157 Traffic Simulation Lab - No Rubric (No longer in circulation)

131



LAB - BRICK WALL 
BRICK WALL 
Sometimes, when we write programs and scripts, it feels like we 
have hit a brick wall. (This is a good sign; if a project isn't hard, 
you're not stretching your mind!) Now, you are going to draw this 
brick wall: 

 

Abstraction  
While SNAP has lots of blocks for drawing and moving, it doesn't 
have anything about bricks. It wouldn't make sense to have one in 
general because most programs don't involve bricks. But ones 
that do could really use a  block.  moves us away 
from having to talk in the computer's terms and closer to using the 
terms of the problem we're trying to solve. The process of moving 
from what the programming language gives you to a natural 
language (one that humans speak to communicate ) is critical to a 
good abstraction. 

In this problem, you will build an abstraction for drawing a brick 
wall, first by creating , then blocks for drawing rows, and 
ultimately the goal: . 

  

132



Drawing  One  Brick  
A brick is a solid red rectangle ("brick red," i.e., not a bright 
primary-color red but somewhat darker). There's no "draw 
rectangle" block in SNAP, but we can fake it by thinking of a 
rectangle as a very thick line. You know how to draw a line, with 
the move block. In the Pen palette there's a set pen size block. 
We can use it to draw a thick line: 

 
If you try out this block, you'll notice that your brick has rounded 
ends. These ends stick out beyond the length of the line you 
asked to draw. Here's a picture of the rounded brick with a regular 
line (pen size 1) inside it: 

 
These rounded ends are very pretty when drawing most pictures, 
but they don't look like bricks, and they make thinking about 
lengths in this project too complicated. So for this project you're 
going to turn off the rounded ends. Click on the settings button 
( ) in the toolbar, and turn on the "Flat line ends" setting. 

Using  Problem  Decomposition  to  
Write  an  Abstraction  
Consider this line of code that was used to create the brick wall: 

 

133



If you were to ask a mason to make a brick wall with seven rows, 
he would surely understand your meaning and make it happen. A 
computer, however, doesn't know what that means, so you have 
to fill in the details. This means going from the abstract (draw a 
brick wall) to the concrete (pardon the pun), which involves 
problem decomposition. 

A quick observation shows that there are two kinds of rows of 
bricks: 

• Row  A:     

• Row  B:     

Make blocks  and . Think about what helper blocks 
besides  you might want. 

It's possible to go overboard on abstraction, so that you have a 
gazillion blocks and it's hard to find where the work actually gets 
done. But, on the other hand, sometimes it's useful to make a 
custom block even if its definition is just one primitive block. For 
example, to draw the mortar (the white space) between blocks in 
a row, all you have to do (since the  block picks up the 
pen at the end of its script) is move forward: 

 
You could just use that move block inside your Row A block. But 
you might instead want to define a Draw Mortar block. Why? 
Maybe later you'll decide that four steps is the wrong thickness for 
mortar, and you'd rather have five steps. If there are a 
dozen Move blocks scattered through your program to draw 
mortar, you might not find them all. With a Draw Mortar block, 
you can just change its definition, and all the mortar in your 
picture will be changed. 

134



Notice that the two kinds of rows should be exactly the same 
length. Your first try at drawing a Row B will probably be a little 
too long. Why? Row A has six whole bricks. Row B has five whole 
bricks plus two half-bricks, which adds up to six whole bricks. To 
understand the bug, think about the amount of mortar in each kind 
of row. 

How are you going to fix it? Should a Row B have different-size 
bricks, different-size mortar gaps, or different-size half-bricks? If 
you're not sure, try all the possibilities and see which looks right in 
the finished wall. (There's really only one good answer.) 

Once you have the two kinds of rows the same length, you can 
write the block. Remember that it should 
work for both even and odd numbers of rows, which means that 
sometimes you'll have to draw an extra Row A. 

(How do you know if a number is odd? You'll find 
the  block helpful.) 

Additional  Exercises  
After you've drawn the picture at the top of this page, add more 
inputs to the Draw a Brick Wall block: 

• Length  of  the  wall  (how  many  bricks)  
• Length  of  a  brick  
• Mortar  thickness  

Add these one at a time, not all at once! When you modify the 
length of a brick, that should also change the length of a half-
brick. When you modify the mortar thickness, that should also 
change the distance between rows (since that's mortar too). 
	
  

135



Game: Making a Brick Wall

Student Name:

Category/Points 4 3 2 1 0 Learning Objective/Essential Knowledge

Abstraction

Code properly separated
into deeper functions
and abstractions.  
Different abstractions for
each process:
Draw brick
Rows
Draw Brick Wall
Draw Mortar

Majority of code is 
separated into different
levels of abstraction
with few functions 
not divided into new 
blocks for functionality.

Some of the code is abstracted
properly, using different functions 
and code blocks to perform basic
actions.  Few functions are left
non abstracted.

Little of the code is 
properly abstracted with 
the majority of functions 
left together.

Code all contained within
one singular block,
not separated into more
blocks and functions.

EK 2.2.1B An abstraction extracts common 
features from specific examples 
in order to  generalize concepts.

EK 5.3.1A Procedures are reusable programming
abstractions.

Visual

Brick Wall is styled 
correctly:
Brick Color
Sharp Edges
Consistent size/shape
Consecutive layers are
  offset.
Layers are offest properly
  with use of whitespace.

Meets the majority of the 
styling requirements.

Meets half of the styling 
requirements.

Meets few of the 
styling requirements.

Meets none of the 
required styling conditions.

EK 2.3.1D Simulations mimic real-world events 
without the cost or danger of building and testing 
the phenomena in the real world

Mathematics

Code uses mathematics
(loops, mod, etc.) to 
automatically monitor 
when the code begins,
ends, and how it 
processes.

Majority of code uses
mathematics to monitor
and keep track of 
how it runs.

Some mathematics is used to
automate the functions but there
are uses of numerous manual
function calls that could be replaced
with math to automate it.

Little mathematics is 
used to automate
the process of drawing
the wall and the program
relies on manual function
block calls.

Uses no mathematics to
monitor the beginning/
end of the process of 
drawing and contains 
numerous cases of same 
fucntion call.

EK 4.1.1D Iteration is the repetition of part of an 
algorithm until a condition is met or for a specified
number of times.

Use of Parameters

Code blocks and abstract
functions use parameters
to increase usability and
are easily changable for 
testing.

Majority of abstractions 
utilize parameters to be
used for testing.

Some functions and abstractions
utilize parameters to allow greater
functionality.

Few abstractions utilize
parameters.

Abstractions do not 
utilize parameters.

EK 5.3.1F Parameters generalize a solution by
allowing a procedure to be used instead of 
duplicated code.

Style/Layout

Code cleanly organized
and laid out to be read 
easily.  Abstractions/
blocks are properly
composed.

Much of the code is 
cleanly organized 
with certain parts
disjointed/apart.

Half of the code is cleanly organized
with the other half disjointed and 
separated.  

Majority of code is 
broken apart and hard to
follow by the reader.

Code is laid out 
sporatically and cannot 
easily be followed by the 
reader/grader.

EK 3.1.3A Visualization tools and software can 
communicate information about data.

Naming

Naming of functions,
including abstractions,
acurately represents
the problem being solved.

Some functions named properly, 
others provide no meaning.

All functions named
improperly, not representing
the problem at hand.

EK 5.4.1C Meaningful names for variables and 
procedures help people better understand 
programs.

EK 5.1.2E Documentation about program 
components, such as blocks and procedures, 
helps in developing and maintaining programs.

Collaboration (Optional)

Classmates work with 
assigned team mate
and complete/turn in
project together.

Classmates did not
work together.

EK 3.1.2A Collaboration is an important part of 
solving  data-driven problems.

136136136



MORE ON COMPOSITION OF HIGHER ORDER 
FUNCTIONS 

 

 

 
This is the corrected version of acronym that checks for words 
starting with a capital letter. Isn't it beautiful? It does a 
complicated job, so there's a lot packed in there, but think how 
much worse it would be if we didn't have lists to help organize 
such tasks. You'd take the text string phrase and write a loop to go 
through it, character by character, looking for spaces as word 
separators. Then you'd have to build up the result string, adding 
one letter at a time. 

With map, keep, and combine, you can operate on the items of a 
list all at once. You don't have to think, "Find the first letter of the 
first word and operate on it, then increase the loop index until you 
find a space, then skip over any extra spaces that might be next 
to it, then remember the position of the beginning of the second 
word" and so on. You can think, "give me the first letters of all the 
words."  
 
(Instead, all that ugliness about looking for spaces is hidden 
inside the sentence->list block, where everyone writing an 
application about sentences can use it without having to reinvent 
it. This is another example of abstraction, which we mentioned 

137



right at the beginning as one of the central ideas of the course 
and of computer science in general.) 
 
 
Try this: 

- Write a max block that takes two numbers as inputs and reports 
the bigger one (either of them, if they're equal). Use it, and the list 
tools, to find the length of the longest word of a sentence. 

- Using that length to help, write a block that reports the longest 
word of a sentence (or the first word of that length, if there's a tie). 

- Write a word->list block that takes a word of text as input, and 
reports a list in which each item is a single letter from the word. 
To do this, you'll have to use a loop, along with the add	to	
list block: 

 
- Imagine that you're writing a program to play Hangman. The 
program has thought of a secret word, and the user is trying to 
guess it. Write a display	word block that takes two inputs, the 
secret word and a list of the letters guessed by the user so far. It 
should say the letters of the secret word, spaced out, with 
underscore characters replacing the letters not yet guessed: 

  
(Use your word->list block on the secret word to get started.) 

138



Game: Hangman

Student Name:

Category/Points 4 3 2 1 0 Learning Objective/Essential Knowledge

Abstraction

Code properly separated
into deeper functions
and abstractions.  
Different abstractions for
each process:
Word-List
Display Word (etc.)

Majority of code is 
separated into different
levels of abstraction
with few functions 
not divided into new 
blocks for functionality.

Some of the code is abstracted
properly, using different functions 
and code blocks to perform basic
actions.  Few functions are left
non abstracted.

Little of the code is 
properly abstracted with 
the majority of functions 
left together.

Code all contained within
one singular block,
not separated into more
blocks and functions.

EK 2.2.1B An abstraction extracts 
common  features from specific 
examples in order to generalize 
concepts.

EK 5.3.1A Procedures are reusable 
programming abstractions.

Algorithm Composition

Code cleanly organized
and laid out to be read 
easily.  Abstractions/
blocks are properly
composed.

Much of the code is 
cleanly organized 
with certain parts
disjointed/apart.

Half of the code is cleanly organized
with the other half disjointed and 
separated.  

Majority of code is 
broken apart and hard to
follow by the reader.

Code is laid out 
sporatically and cannot 
easily be followed by the 
reader/grader.

LO 4.1.2 Express an algorithm in a 
language. 

LO 4.4.1 Develop an algorithm for 
implementation in a program.

Mathematics

Code uses math and logic
(loops, mod, etc.) to 
automatically monitor 
when the code begins,
ends, and how it 
processes.

Majority of code uses
mathematics to monitor
and keep track of 
how it runs.

Some mathematics is used to
automate the functions but there
are uses of numerous manual
function calls that could be replaced
with logic to automate it.

Little or incorrect math is 
used to automate the program
process and the program
relies on manual function
block calls.

Uses no mathematics to
monitor the beginning/
end of the process of 
drawing and contains 
numerous cases of same 
fucntion call.

EK 5.5.1D Mathematical expressions 
using  arithmetic operators are part of 
most programming languages.

Use of List/Parameters

Code blocks and abstract
functions use list operators 
& parameters to increase 
program efficiency.

Majority of abstractions 
utilize parameters to be
used for testing, some list
operators are used for
efficiency.

Some functions and abstractions
utilize parameters and list operators
 are not used efficiently.

Few abstractions utilize
parameters.

Abstractions do not 
utilize parameters.

EK 5.3.1F Parameters generalize a 
solution by allowing a procedure to be 
used instead of  duplicated code. 

EK 5.3.1L Using lists and procedures as 
abstractions in  programming can result 
in programs that are easier to  develop 
and maintain.

Correctness/Readability

Naming of functions,
including abstractions,
acurately represents
the problem being solved
program is easy to read; 
program works.

Some functions named properly, 
others provide no meaning. program 
can be understood after a few read 
throughs, and mostly works

All functions named
haphazardly, difficult to under-
stand, or doesn't work

LO 5.4.1 Evaluate the correctness of a 
program.

EK 5.4.1C Meaningful names for 
variables and  procedures help people 
better understand  programs.

139139139



BEYOND BINARY 
 

Here's our solution: 

 
The base case is that the number fits in a single bit—that is, it has 
to be less than 2. If so, the number itself, 0 or 1, is the desired 
output. 

In the recursive case, the rightmost bit of the result is the 
remainder of dividing the number by 2. That is, even numbers end 
with 0, and odd numbers end with 1. The rest of the result is a 
recursive call on the (integer) quotient of the number divided by 2. 
The combiner is join because we want to string the digits 
together. It may be surprising that we don't use an arithmetic 
operator, since we're working with numbers, but the desired result 
is a numeral, which is a visible representation of a number, rather 
than the numeric value itself. A numeral is a text string, so the 
combiner is a string operation. 

Other Bases 
There's no reason to limit ourselves to decimal (base 10) and 
binary (base 2). How about base 7? 

 

140



The base 7 digits are 0‒6, and the digit positions represent 
powers of 7. 

☞ Write the base7 block. Then generalize the pattern with 
a base block that takes the base as a second input: 

 

 
☞ Optional for hotshots: Improve the base block so that it 
can go up to base 36 by using the letters a‒zas digits with 
values 10‒35. 

 
☞ Write the inverse function from	base that takes a (text) 
string of digits and a base as inputs, and reports the 
corresponding number (which Snap! will show in decimal, of 
course, but you're converting to a number, not to a string of 
digits). Again, bases above ten are optional. 

 
	

141



Binary Numbers

Student Name:     ________________________________________

CATEGORY 4 3 2 1 0 Learning Objective/Essential Knowledge

Abstraction Code properly separated into 
multiple abstractions. Should have 
separate blocks defined (i.e. pascal, 
next row - or the equivalent 
functions).

Code separated into multiple 
abstractions with only minor 
overlapping between functions. 

Code separated into multiple 
abstractions with function that do 
the same thing. 

Little of the code is properly 
abstracted with the majority of 
functions left together.

Code all contained within one singular 
block, not separated into more blocks 
and functions.

EK 2.2.1C An abstraction generalizes 
functionality with input parameters that allow 
software reuse.

Visual Reports a strings of zeros and ones is 
that correctly converts to binary 
from decimal (user input). 

Reports a strings of zeros and ones is 
that attempts to  convers to binary 
from decimal (user input). 

Nothing is reported EK 3.1.3A Visualization tools and software can 
communicate information about data.

Mathematics Code uses a combination of 
mathematical concepts (floor, mod, 
etc) to calculate the binary numbers.  
Mathematics is used to automate 
function calls. 

Majority of the code uses a 
combination of mathematical 
concepts (floor, mod, etc) to 
calculate the binary numbers. Some 
hardcoded base cases are with in the 
math. Mathematics is used to 
automate function calls.

Some of the code uses a 
combination of mathematical 
concepts (floor, mod, etc) to 
calculate the binary numbers. Some 
hardcoded base cases are with in the 
math. Minimal mathematics is used 
to automate function calls.

Most of the code has hardcoded 
conversions from decimal to binary 
instead of calculating using 
operations, such as floor or mod. 
Function calls are not automated. 

Uses no mathematics to monitor the 
loops. 

EK 2.1.1G Numbers can be converted from any 
base to any other base. 
EK 4.1.1D Iteration is the repetition of part of an 
algorithm until a condition is met or for a 
specified number of times.
EK 5.5.1A Numbers and numerical concepts are 
fundamental to programming.

Use of Parameters Code blocks and abstract functions 
use parameters to increase usability 
and are easily changable for testing. 
Parameters allow user to input a 
number that is decimal (base 10).

Majority of abstractions utilize 
parameters to be used for testing. 

Some functions and abstractions 
utilize parameters to allow greater 
functionality. 

Few abstractions utilize
parameters. 

Abstractions do not utilize 
parameters. Do no use parameters 
from user input.

EK 5.3.1G Parameters provide different values as 
input to procedures when they are called in a 
program.

Style/Layout Code cleanly organized and laid out 
to be read easily.  Abstractions/ 
blocks are properly composed.

Much of the code is cleanly organized 
with certain parts disjointed/apart.

Half of the code is cleanly organized
with the other half disjointed and 
separated.  

Majority of code is broken apart and 
hard to follow by the reader.

Code is laid out sporatically and 
cannot easily be followed by the 
reader/grader.

EK 5.4.1A Program style can affect the 
determination of program correctness.
EK 5.4.1B Duplicated code can make it harder to 
reason about a program.

Naming Naming of functions, including 
abstractions, acurately represents 
the problem being solved.

Some functions named properly, 
others provide no meaning.

All functions named improperly, not 
representing the problem at hand.

EK 5.4.1C Meaningful names for variables and 
procedures help people better understand 
programs.
EK 5.1.2E Documentation about program 
components, such as blocks and procedures, 
helps in developing and maintaining programs.

142142142



C-CURVE 
 
We can make very very complex images by just repeating the 
same shape multiple times. You'll be writing the recursive function 
to draw the c-curve. Below the base case is that the sprite draws 
a single line. The sprite starts facing right and faces right at the 
end. (Hint - the direction that the sprite points at the end is 
important! It should point in the same direction it did at the 
beginning of the recursive call.) 

  
 
In the next level, start facing right and end facing right but repeat 
the previous level twice (red and blue below). 

  
In the next level, start facing right and end facing right but repeat 
the previous level twice (red and blue below). 
 

  
 
In the next level, start facing right and end facing right but repeat 
the previous level twice (red and blue below). This continues for 
each of the following levels, but you should probably focus on the 
trying to think through the first few levels. 

143



If it's helpful to you, use the same technique we showed in writing 
the tree program: Start with a flake1block that handles the base 
case, then write a flake2 block, then flake3, and so on until you 
understand the pattern. 

 

  
 

  
 

  
 

  
 

144



  
 

  
 

  
 

  

145



 

  
	

146



 

Fractals: C-Curve Fractal

Student Name:     ________________________________________

CATEGORY 4 3 2 1 0 Learning Objective/Essential Knowledge

Abstraction Code properly separated into 
multiple abstractions. There should 
be a hierarchy of functions (the main 
C-Curve fractal level should call other 
functions).

Code separated into multiple 
abstractions with only minor 
overlapping between functions. 

Code separated into multiple 
abstractions with function that do 
the same thing. 

Little of the code is properly 
abstracted with  the majority of 
functions left together.

Code all contained within one singular 
block, not separated into more blocks 
and functions.

EK 2.2.1C An sbatraction generalizes functionality 
with input parameters that allow software.

Visual C-Curve are styled correctly:
- see image online
- variable size
- variable number of levels.
Levels are correctly added to the 
corners of the main center C-Curce 
(angles all correct)

C-Curve are styled correctly:
- see image online
- variable size
- variable number of levels

C-Curve are styled as:
- see image online
There is either variable number of 
levels or variable size.

C-Curve are styled as:
- see image online
There is not variable levels or 
variable size

Initial C-Curve does not appear as 
initial C-Curve online.

EK 3.1.3A Visualization tools and software can 
communicate information about data.

Mathematics Code uses mathematics (loops, 
operations, ...) to monitor length of 
C-Curve, how many levels of C-Curve 
to make.

Majority of code uses mathematics 
to monitor either length of triangles 
or how many C-Curve to make.

Some mathematics is used to
automate the functions but there
are uses of numerous manual
function calls that could be replaced
with math to automate it.

Little mathematics is  used to 
automate the process of drawing 
the treesl and the program relies on 
manual function block calls.

Uses no mathematics to
monitor the loops for drawing the 
trees  and contains numerous cases of 
same fucntion call instead of using 
loops or calculated numbers.

EK 4.1.1E Algorithms can be combined to make 
new algorithms. 
EK 4.1.1F Using existing correct algorithms as 
building blocks for constructing a new algorithm 
helps ensure the new algorithm is correct.
EK 5.5.1A Numbers and numerical concepts are 
fundamental to programming.

Use of Parameters Code blocks and abstract functions 
use parameters to increase usability 
and are easily changable for testing. 
Parameters allow user to input size 
of C-Curve and number of levels. 

Majority of abstractions utilize 
parameters to be used for testing. 
Most parameters are from user 
inputs.

Some functions and abstractions 
utilize parameters to allow greater 
functionality. Some parameters are 
from user inputs.

Few abstractions utilize
parameters. Do no use parameters 
from user input.

Abstractions do not 
utilize parameters.

EK 5.3.1G Parameters provide different values as 
input to procedures when they are called in a 
program.

Style/Layout Code cleanly organized and laid out 
to be read easily.  Abstractions/ 
blocks are properly composed.

Much of the code is cleanly organized 
with certain parts disjointed/apart.

Half of the code is cleanly organized
with the other half disjointed and 
separated.

Majority of code is  broken apart 
and hard to follow by the reader.

Code is laid out  sporatically and 
cannot  easily be followed by the  
reader/grader.

EK 5.4.1A Program style can affect the 
determination of program correctness.
EK 5.4.1B Duplicated code can make it harder to 
reason about a program.

Naming Naming of functions, including 
abstractions, acurately represents 
the problem being solved.

Some functions named properly, 
others provide no meaning.

All functions named improperly, not 
representing the problem at hand.

EK 5.4.1C Meaningful names for variables and 
procedures help people better understand  
programs.
EK 5.1.2E Documentation about program 
components, such as blocks and procedures,  
helps in developing and maintaining programs.

147147147



eCard	Activity	

For	You	To	Do	
Create an eCard that meets all of the following specifications: 
1. Has a message for the viewer (such as "Happy New Year," "Happy 

Birthday," "Get Well Soon," etc.) 
2. Has stage and sprite costumes 
3. Works properly (is not buggy) 
4. Includes a custom block. This can be either: 

• A start over block that resets the eCard to the beginning (resets 
pen, stage, and sprites) OR 

• Another custom block containing at least 3 blocks (this could move a 
sprite, change the background, etc.) 

5. Uses  or  to customize the card based on some 
information about the recipient (e.g., age or gender) 

6. Uses  or , for example, to 
animate a sprite or draw a pattern in the background. 

7. Lets the user interact (e.g., by clicking a sprite, pressing a key, or moving the 
mouse) 
 

When you have finished your app, export it to an .xml file (see image below), 
upload it to Piazza, and write a short description of your program. If necessary, 
also say how to use it. 
 

148



BJC 2017 - eCard Grading Rubric

Please use the rubric below to rate your partner's project. Then upload the project file
below.

Category: Creativity
Learning Objective: Create a computational artifact for creative expression. 
Programs developed for creative expression, to satisfy personal curiosity, or to create new
knowledge may have visual, audible, or tactile inputs and outputs.

Select the rating which best applies to the project:

Category: Algorithms/Loops 
Learning Objective: Develop an algorithm for implementation in a program. 
Iteration is the repetition of part of an algorithm until a condition is met or for a specified
number of times.

Select the rating which best applies to the project:

Category: Abstraction
Learning Objective: Use abstraction to manage complexity in programs. 

0: An e-card has not been created

1: A message has been displayed or costumes have been utilized

2: A message is displayed on a costumed stage

3: The e-card features a message with both stage and sprite costumes

4: The user can interact with the e-card to cause a change to creative elements of the card

0: No loops or iteration was used

1: The program implements a loop incorrectly

2: The program implements a loop correctly

3: The program correctly uses a repeat until or for block to visually change the e-card

4: The program correctly uses at least one repeat until or for blocks to contribute to the creativity of
the e-card

149



Duplicate Code and longer code segments are harder to reason about than shorter code
segments in a program.

Select the rating which best applies to the project:

Category: Logic
Learning Objective: Employ appropriate mathematical and logical concepts in
programming. 
Logical concepts and Boolean algebra are fundamental to programming.

Select the rating which best applies to the project:

Category: Documentation
Learning Objective: Documentation helps in developing and maintaining programs when
working individually or in collaborative programming environments.
Meaningful names for variables and procedures help people better understand programs.

Select the rating which best applies to the project:

0: No custom block was used

1: The program implements a custom block

2: The program reuses a custom block

3: The program uses a custom block containing at least three other blocks

4: The program uses custom blocks to help segment the program into reasonable chunks

0: No conditionals were used

1: A conditional statement is implemented incorrectly

2: The program properly utilizes conditional logic

3: The program uses conditional logic to customize the e-card

4: The program uses conditional logic to customize the e-card based on user input

0: Code is not documented and hard to interpret

1: Code is not documented or named well

2: Code is named aptly, but difficult to interpret

3: Variables and methods are named so that code is easy to interpret

4: Code is well documented with comments and easy to interpret

150



Powered by Qualtrics

Category: Writing
Learning Objective: Use written language to explain how a program meets its specifications. 
An explanation of a program helps people understand the functionality and purpose of it
and is often described by how a user interacts with it.

Select the rating which best applies to the project:

Please upload the project file you just graded. (It will look like "Project-Name.xml").

0: No written statement included

1: Written statement does not describe program

2: Written statement gives vague understanding of program

3: Written statement adequately explains the program

4: Written statement uses language to give a high-level overview on the functionality of the program
and how users interact with it

151



Shopping	List	App	

 
 

Many computer 
apps—contact lists, 
playlists, calendars of 
events, locations on a map, reminders—involve manipulating lists of information with 
tools that search, sort, or change the items on the list. In this first activity, you'll create 
a Shopping List app. 

 
You've worked with lists before. In this unit you will learn more about this powerful data 
structure. Lists can contain letters or words, as you've seen before, or lists, as you'll 
see in this unit, or even blocks, as you'll see in Unit 6. When you used map with lists in 
Unit 1, it worked with all the items in a list. You can also select a specific item in a list 
by specifying its position by number. That number is called the index. 

  

152



For	You	To	Do	

1. Load this project. 

2.  called shopping list to store the information. 

3. Use  to set the starting value of shopping 
list to be an empty list. You will need the list 
block . Use its arrows to get rid of its input slot so 
that it looks like this: . 

Some block input slots expect a list as input. You can tell because the input slot 
looks kind of like a list: 

   

4. Write a script for the "Add Item" button so 
that when that sprite is clicked, it 
will ask the user for a new item, and then 
add the new item to the grocery list. You can 
use the add or insert list block to modify the list. Make sure it works. 

5. Write a script for the "Clear List" button that asks for confirmation and then sets the 
variable back to an empty list. 

 

6. Improve the "Add Item" button to add new items only if they are not already on the 
list. You can use contains to see if an item is already on the list. 

7. Write a script for the "Search" button that tells the user whether an item is already 
on the list (but doesn't add the item). 

8. Write a script for the "Delete Item" button that removes an item from the list. 

9. Think of another improvement and program it. 

	

Setting the starting value of 
a variable is known 
as initializing the variable. 

You first saw the ask and answer blocks 
in Unit 2: Using Multiple If Statements and 
Developing a Number Guessing Game. 

153



BJC 2017 - Shopping List Grading Rubric

Please use the rubric below to rate your partner's project. Then upload the project file
below.

Category: Creativity
Learning Objective:  Create a new computational artifact by combining or modifying existing
artifacts.    

 Programs developed for creative expression, to satisfy personal curiosity, or to create new
knowledge may have visual, audible, or tactile inputs and outputs.

Select the rating which best applies to the project:

Category: Algorithms

Learning Objective: Develop an algorithm for implementation in a program. 
Knowledge of standard algorithms can help in constructing new algorithms.

Select the rating which best applies to the project:

Category: List

0: The starter code has not been modified

1: The starter code has been modified, but neither input nor creative aspects are used in the
program

2: The starter program takes in user input or has an extra improvement

3: The starter program takes in user input and has been improved

4: User input has been added throughout the starter program and creative improvements have
been implemented

0: The add item button is not implemented

1: The add item button prompts the user when clicked

2: The add item button prompts and adds an item to a shopping list

3: The add item button checks if an item is on the shopping list

4: The add item button adds items only if they are not already on the shopping list

154



Learning Objective: Use lists and procedures as abstractions to result in programs that are
easier to maintain.
Lists and list operations, such as add, remove, and search, are common in many programs. 

Select the rating which best applies to the project:

Category: Logic
Learning Objective: Employ appropriate mathematical and logical concepts in
programming. 
Selection uses a Boolean condition to determine which of two parts of an algorithm is used.

Select the rating which best applies to the project:

Category: Algorithms/Loops 
Learning Objective: Develop an algorithm for implementation in a program. 
Iteration is the repetition of part of an algorithm until a condition is met or for a specified
number of times.

Select the rating which best applies to the project:

0: No lists were used

1: The program implements an empty list

2: The program implements a list that stores items

3: Users can add items to the shopping list and clear it

4: Users can add, delete, and search for items on the shopping list

0: No conditionals were used

1: A conditional statement is present in the program

2: Conditional statements were used but did not utilize the contains block

3: The program uses conditional logic (incorrectly) to determine when an item should be added to
the list

4: Conditionals are used with list operations (contains) to properly decide when items are added to
the shopping list

0: No loops or iteration was used

1: The program implements a loop incorrectly

2: The program implements a loop correctly

3: The program correctly uses a loop to let users search for or delete items in the list

155



Powered by Qualtrics

Category: Documentation
Learning Objective: Develop a correct program to solve problems. 
Documentation and meaningful names for variables and procedures help people better
understand programs.

Select the rating which best applies to the project:

Please upload the project file you just graded. (It will look like "Project-Name.xml").

4: The program correctly uses multiple loops to complete or enhance their program

0: Code is not documented and hard to interpret

1: Code is not documented

2: Code is named aptly, but difficult to interpret

3: Variables and methods are named so that code is easy to interpret

4: Code is well documented with comments and easy to interpret

156



Building	a	Traffic	Simulation	
Have you ever been on a highway going really slowly in heavy traffic and all of a sudden 
the traffic begins to speed up for no apparent reason at all? Nobody got off. You didn't 
pass an accident. Nothing seems to have changed except that now the cars are going 
faster. What happened? 
 
In this lab, you will develop a model of what might affect traffic speed, and build a 
simulation in Snap! to explore that model. 
 

For You To Do 
The first four steps on this page ask you to think about the algorithm you'll use to build 
this program. You shouldn't be doing anything in Snap! during those steps. 

 
Each of these steps asks you to think about one part of the program. You'll definitely 
want to talk to your partner. You may even want to write some things down. 
 
1. Consider the overall setup. Each car is a sprite. All sprites will have essentially the 

same scripts. The only difference will be where the car starts in line and which car it 
is following. So, this is what car 5's scripts might look like. (But don't start building 
them now. Your programming starts in problem 5 below.) 

To keep the model from being too complicated to program, here are some simplifying 
assumptions: 

• There is a single lane of traffic, and cars can't pass each other. 
• The highway is straight with no stoplights, speed-change signs, or obstacles. 
• Drivers change speed to fit the traffic. 

o If a car is too close to the car ahead of it, it slows down. 
o Drivers speed up whenever they can, up to the speed limit. 

• All cars behave the same. They speed up and slow down equally well. (Their 
engines and brakes are equally good.) 

• Since the stage is not as wide as Arizona and since it is a nuisance to create 
100,000 cars (sprites), you should recycle cars as they leave the stage, 
starting the same car again on the other side of the stage. 

• You can decide... 
o ...how close is "too close" to the car in front; 
o ...how a car speeds up and slows down; 
o ...the speed limit; 
o ...how many cars to put on the road; 

157



 

 
The drive but avoid hitting sprite block will repeat a set of 
actions that might be like this: 
• If too close to next car, change speed to lower speed; otherwise, change to 

higher speed. 
• If over the speed limit, change to lower speed. 
• If at the end of the stage, go back to the beginning. 
• Move at my own current speed. 

 

2. Analyze the state of one vehicle.  What 
variables will it need? 
• You might want to make variables for the rate of acceleration and the rate of 

braking so that you can experiment with them. 
• You must have a variable for the cars' speeds: Each car has its own speed, so 

that variable will be a list of speeds, one for each car. 
• You must set a speed limit, and you might want to be able to experiment with it. 
• Are there other variables you need to keep track of? (Maybe. Maybe not. Keep 

your model simple. You can always add features later on.) 
3. Analyze the behavior of one vehicle. If it sees a car in front of it, it should slow to 

the speed of that car. Otherwise, it should speed up. The distance to the car in front 
should probably matter. 

 

You	will	have	to	
invent	startpos and	
drive but avoid 
hitting sprite. 
	

Because our version of startpos is the same for all sprites, it put all the sprites in 
the same place. So we needed each sprite to move to space out the cars. Your 
program might be different. 

158



4. Design an algorithm for the behavior. Exactly how will the 
car's speed change? When it is close enough to the car in 
front of it, will it just become the speed of that car? Or will it 
slow down more gradually? It must not crash or pass. 

 
Below is one possibility. Notice how it uses replace item to replace the old 
speed with the new speed. This version just replaces it with a speed slightly (and 
randomly) less than the car in front of it. 

 

 
 

When the car has lots of room in front of it, how will it speed up? It must not exceed 
the limit. 

 
5. NOW, program your algorithm in Snap! Give one sprite the ability to detect its 

distance to the (not-yet-existent) sprite ahead of it, and write the script that uses that 
to control its forward motion. Make sure that when a car goes off the screen it comes 
back in the other side. 

 
Here are two tools we found useful. You may or may not need them, depending on 
how you program your model. The 12 in SpriteNumber in front of 
me was the number of sprites in our model. You may need a different number there. 
You might also build this tool quite differently. 

 

 
6. Clone your sprite to create enough cars for your simulation. 

 
7. Make sure the highest-numbered car knows to follow the lowest-numbered 

car. Depending on how you've programmed, that one behavior might be slightly 
different from every other car's behavior. 

159



 
8. Initialize: Set your cars out in some starting position, and give each car whatever 

other information it needs to start off. 
 

One sprite will also need to set the variables that all sprites use. In our model, the 
script looked like this: 
 

 
 

9. Test and refine your model: Do the cars keep moving? Do they avoid crashes as 
they should? Does traffic flow smoothly? Do you see changes in speed? Adjust your 
model, if necessary, so that it works. 

	

160



APPENDIX

B

SURVEY INSTRUMENTS

B.1 Study 3 (Delphi) Consent forms and Survey instruments

pg. 162 National Brick Wall Delphi - Round 1

pg. 166 National Brick Wall Delphi - Round 2

pg. 169 National Brick Wall Delphi - Round 3

pg. 179 Localized Hangman Delphi - Round 1

pg. 183 Localized Hangman Delphi - Round 2

pg. 186 Localized Hangman Delphi - Round 3

161



Delphi PreSurvey - Round 1: Brickwall

Investigation of a BJC lesson: Expert expectations vs. student artifacts

Veronica Catete Tiffany Barnes

What are some general things you should know about research studies?
You are being asked to take part in a research study.  Your participation in this study is voluntary.
You have the right to be a part of this study, to choose not to participate or to stop participating at
any time without penalty.  The purpose of research studies is to gain a better understanding of a
certain topic or issue. You are not guaranteed any personal benefits from being in a study. Research
studies also may pose risks to those that participate. In this consent form you will find specific
details about the research in which you are being asked to participate. If you do not understand
something in this form it is your right to ask the researcher for clarification or more information. A
copy of this consent form will be provided to you. If at any time you have questions about your
participation, do not hesitate to contact the researcher(s) named above.

What is the purpose of this study?
The purpose of this study is to understand the connections between student artifacts and learning
objectives for the Computer Science Principles Course, Beauty and Joy of Computing.  The
researchers would like to determine what evidence needs to be present in an artifact to demonstrate
mastery of the desired learning objectives.

What will happen if you take part in the study?
If you agree to participate in this study, you will be asked to participate as an expert in a Delphi
study. This will require you to complete a set of online surveys until all experts come to agreement.
In between each survey, results will be aggregated and a summary will be sent out to participants
with a new survey.  Each survey is expected to take between 10 – 15 minutes.  We anticipate each
round of surveys being open for approximately two weeks, with results and follow­up surveys being
sent out the following week.

Risks
Only minimal risk will be involved during this study, as only email address will be retained (but not
published).  

Benefits
By participating in this study, you will help clarify the lesson plans for a BJC unit and help new
computer science high school teachers understand what they are teaching, and how they can verify
this in student code. If it comes across that student artifacts do not match what our experts are
expecting, then we will also update the lessons to help facilitate more accurate learning.

Confidentiality
The information in the study records will be kept confidential to the full extent allowed by law.  Data
will be stored securely on an encrypted server stored in a locked room. All collected data will have
any remaining identifiers (email address) removed once the study is over.

Compensation
The participants will not receive compensation for participating in this study.

162



Yes, I agree to participate in this study.

No, I do not agree to participate in this study.

What if you have questions about this study?
If you have questions at any time about the study or the procedures, you may contact the
researcher, Veronica Catete, at vmcatete@ncsu.edu, or [919 820­2578].  

What if you have questions about your rights as a research participant?
 If you feel you have not been treated according to the descriptions in this form, or your rights as a
participant in research have been violated during the course of this project, you may contact Deb
Paxton, Regulatory Compliance Administrator at dapaxton@ncsu.edu or by phone at 1­919­515­
4514.

Consent To Participate
“I have read and understand the above information.  I agree to participate in this study with the
understanding that I may choose not to participate or to stop participating at any time without
penalty or loss of benefits to which I am otherwise entitled.”

Please enter you preferred email address for further contact

Lesson Unit Abstraction and Testing: Brick Wall

Please review the topic 4 lab from the CS Principles course, Beauty & joy of Computing (BJC). 
If you have trouble accessing the lab please go to the link below. 

http://bjc.berkeley.edu/bjc­r/cur/programming/abstraction/new­brick­wall.html?
topic=berkeley_bjc%2Fintro_pair%2F4­abstraction­
testing.topic&course=cs10_sp15.html&novideo&noreading&noassignment

Take a look at the list of learning objectives and essential knowledge points as defined in the AP CS
Principles Framework, paying special attention to section 5.  Learning objectives start on page 6.
We only ask about Big Ideas 1, 2, 4 and 5

Which learning objectives apply to this lesson?

Directions: Please drag items from the left­hand stack, and drop them into the right­hand groups.
 Place the top five items into the top group. If an item does not apply, slide it off to the left and it will
go to the bottom of the list.

163



I am familiar with both CS Principles and BJC.

I am familiar with CS Principles but not BJC.

I am familiar with BJC but not CS Principles.

I am familiar with NEITHER of these courses.

I have never taught CS Principles

1­2 years

2­3 years

3+ years

Items

23 / 23

Top Five objectives best demonstrated through this lesson

Applies to Lab 4 (Brick Wall)

Please rate your level of confidence on your answers to the previous question

1 ­ none 2 ­ low 3 ­ medium 4 ­ high 5 ­ expert

Are you familiar with the Computing Science Principles course or the Beauty & Joy of Computing.

How many years have you taught CS Principles?

Are you responsible for the creation of CS Principles or BJC?

Apply a creative development
process when creating
computational artifacts. [P2]

Create a computational artifact for
creative expression. [P2]
Create a computational artifact
using computing tools and
techniques to solve a problem.
[P2]

Create a new computational
artifact by combining or modifying
existing artifacts. [P2]

Collaborate in the creation of
computational artifacts. [P6]
Analyze the correctness, usability,
functionality, and suitability of
computational artifacts. [P4]

Use computing tools and
techniques for creative expression.
[P2]

Describe the variety of
abstractions used to represent
data. [P3]

Explain how binary sequences are
used to represent digital data. [P5]
Develop an abstraction when
writing a program or creating other
computational artifacts. [P2]

Use multiple levels of abstraction
to write programs. [P3]
Identify multiple levels of
abstractions that are used when
writing programs. [P3]

Use models and simulations to
represent phenomena. [P3]
Use models and simulations to
formulate, refine, and test
hypotheses. [P3]

Develop an algorithm for
implementation in a program. [P2]
Express an algorithm in a
language. [P5]
Develop a program for creative
expression, to satisfy personal
curiosity, or to create new
knowledge. [P2]

Develop a correct program to solve
problems. [P2]
Collaborate to develop a program.
[P6]
Explain how programs implement
algorithms. [P3]

Use abstraction to manage
complexity in programs. [P3]
Evaluate the correctness of a
program. [P4]
Employ appropriate mathematical
and logical concepts in
programming. [P1]

164



Yes to Both

CS Principles, but not BJC

Just BJC

Neither

Male

Female

White/Caucasian

African American

Hispanic

Asian

Native American

Pacific Islander

Other

Please enter the name of your University or Educational Institution  

Please indicate your occupation:

 

What is your gender?

What is your race?
 

165



Delphi Round 2: Brickwall

Instructions for Round Two:
In Round Two, your objective is to RATE each of the competencies and objectives that were accepted and/or
voted on from Round One. Please do not be undeterred by the length; it should go quickly once you are used
to the format. You will rate the items from 1 ­ 5 on the following scale, where '1' represents the lowest degree
of importance and '5' represents the highest degree of importance:
1 ­ Strongly Disagree/This competency or objective should not be taught as part of the lesson
2 ­ Disagree/ This competency or objective may not be beneficial if taught through the lesson
3 ­ Neither Disagree nor Agree/ This competency or objective could or could not be taught in the lesson as is
4 ­ Agree/ This competency or objective could be beneficial if taught during this lesson
5 ­ Strongly Agree/ This competency or objective should be taught through this lesson

Please note that the newly voted competencies have space for you to select specific essential knowledge
components if you'd like to.

Link to Brick Wall Assignment

Please rate how much you agree or disagree with the following learning objectives for Lab Unit 6 (Brick Wall).
[1 Strongly Disagree – 5 Strongly Agree]

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Use abstraction to manage
complexity in programs. [P3]

Develop an abstraction when
writing a program or creating
other computational artifacts.
[P2]

Develop a correct program to
solve problems. [P2]

Use multiple levels of
abstraction to write programs.
[P3]

Develop an algorithm for
implementation in a program.
[P2]

Express an algorithm in a
language. [P5]

Employ appropriate
mathematical and logical
concepts in programming. [P1]

Create a new computational
artifact by combining or
modifying existing artifacts. [P2]

Based off of your rating for "Use multiple levels of abstraction to write programs," which essential knowledge com
successfully covered? [Select all that apply]

166



Based off of your rating for "use of abstraction to manage complexity in program," which essential
knowledge components can be successfully covered? [Select all that apply]

Please rate how much you agree or disagree with the following learning objectives for Lab Unit 6 (Brick Wall).
[1 Strongly Disagree – 5 Strongly Agree]

      Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Identify multiple levels of
abstractions that are used
when writing programs. [P3]

   

Evaluate the correctness of a
program. [P4]    

Create a computational artifact
using computing tools and
techniques to solve a problem.
[P2]

   

Explain how programs
implement algorithms. [P3]    

Collaborate to develop a
program. [P6]    

Analyze the correctness,
usability, functionality, and
suitability of computational
artifacts. [P4]

   

Use computing tools and
techniques for creative
expression. [P2]

   

Use models and simulations to
represent phenomena. [P3]    

EK 2.2.2A Software is developed using multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.
EK 2.2.2B Being aware of and using multiple levels of abstraction in developing programs helps to more effectively apply available resources a

EK 5.3.1A Procedures are reusable programming abstractions.
EK 5.3.1B A procedure is a named grouping of programming instructions.
EK 5.3.1C Procedures reduce the complexity of writing and maintaining programs.
EK 5.3.1D Procedures have names and may have parameters and return values.
EK 5.3.1E Parameterization can generalize a specific solution.
EK 5.3.1F Parameters generalize a solution by allowing a procedure to be used instead of duplicated code.
EK 5.3.1G Parameters provide different values as input to procedures when they are called in a program.
EK 5.3.1H Data abstraction provides a means of separating behavior from implementation.
EK 5.3.1J Integers and floating‑point numbers are used in programs without requiring understanding of how they are implemented.

Based off of your rating for "create a computational artifact for creative expression," which essential knowledge c

167



Based off of your rating for "Employ appropriate mathematical and logical concepts in programming," which
essential knowledge components can be successfully covered? [Select all that apply]

EK 1.2.1A A computational artifact is something created by a human using a computer and can be, but is not limited to, a program, an image, a
EK 1.2.1B Creating computational artifacts requires understanding of and use of software tools and services.
EK 1.2.1C Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming inte

EK 5.5.1A Numbers and numerical concepts are fundamental to programming.
EK 5.5.1DMathematical expressions using arithmetic operators are part of most programming languages.
EK 5.5.1E Logical concepts and Boolean algebra are fundamental to programming.
EK 5.5.1F Compound expressions using and, or, and not are part of most programming languages.
EK 5.5.1G Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.
EK 5.5.1H Computational methods may use lists and collections to solve problems.
EK 5.5.1I Lists and other collections can be treated as abstract data types (ADTs) in developing programs.

168



Delphi Round 3: Brickwall

Think about the Brick Wall lesson and the most important learning objectives related to that.
 What would evidence of this learning look like in code?  how about at a high level? a low? 

http://bjc.edc.org/bjc-r/cur/programming/2-conditionals-abstraction-testing/3-building-
more-complex-blocks/3-abstraction-brick-wall.html?topic=nyc_bjc%2F2-conditionals-
abstraction.topic&course=bjc4nyc_2015-2016.html&novideo&noassignment

In the following questions, you will be given some snap code. We would like you to identify
the learning objectives present, and the level of quality  (1 present but not correct - 4
present and fully correct). 

Sample 1

Please Identify and rank the top THREE learning objectives/essential knowledge elements
that apply best to the above code

169



Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Sample 2

 

Choice 1

 

Choice 2

 

Choice 3

170



Please Identify and rank THREE learning objectives/essential knowledge that applies best
to the above code

Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or

 

 

Choice 1

 

171



well implemented)

Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Sample 3

Please Identify and rank THREE learning objectives/essential knowledge that applies best
to the above code

Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or

Choice 2

 

Choice 3

 

 

172



well implemented)

Choice 2

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Sample 4

Choice 1

 

Choice 2

 

Choice 3

173



Please Identify and rank THREE learning objectives/essential knowledge that applies best
to the above code

Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

 

 

Choice 1

 

Choice 2

174



Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Sample 5

Please Identify and rank THREE learning objectives/essential knowledge that applies best
to the above code

 

Choice 3

 

175



Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Sample 6

 

Choice 1

 

Choice 2

 

Choice 3

176



Please Identify and rank THREE learning objectives/essential knowledge that applies best
to the above code

Choice 1

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

 

 

Choice 1

 

177



Powered by Qualtrics

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 3

For the choice you  selected above, please explain (as if to another teacher) why or how the
previous code demonstrates that learning goal. (please note if the learning goal is poorly or
well implemented)

Choice 2

 

Choice 3

178



Delphi PreSurvey - Round 1: Hangman

Investigation of a BJC lesson: Expert expectations vs. student artifacts

Veronica Catete Tiffany Barnes

What are some general things you should know about research studies?
You are being asked to take part in a research study.  Your participation in this study is voluntary.
You have the right to be a part of this study, to choose not to participate or to stop participating at
any time without penalty.  The purpose of research studies is to gain a better understanding of a
certain topic or issue. You are not guaranteed any personal benefits from being in a study. Research
studies also may pose risks to those that participate. In this consent form you will find specific
details about the research in which you are being asked to participate. If you do not understand
something in this form it is your right to ask the researcher for clarification or more information. A
copy of this consent form will be provided to you. If at any time you have questions about your
participation, do not hesitate to contact the researcher(s) named above.

What is the purpose of this study?
The purpose of this study is to understand the connections between student artifacts and learning
objectives for the Computer Science Principles Course, Beauty and Joy of Computing.  The
researchers would like to determine what evidence needs to be present in an artifact to demonstrate
mastery of the desired learning objectives.

What will happen if you take part in the study?
If you agree to participate in this study, you will be asked to participate as an expert in a Delphi
study. This will require you to complete a set of online surveys until all experts come to agreement.
In between each survey, results will be aggregated and a summary will be sent out to participants
with a new survey.  Each survey is expected to take between 10 – 15 minutes.  We anticipate each
round of surveys being open for approximately two weeks, with results and follow­up surveys being
sent out the following week.

Risks
Only minimal risk will be involved during this study, as only email address will be retained (but not
published).  

Benefits
By participating in this study, you will help clarify the lesson plans for a BJC unit and help new
computer science high school teachers understand what they are teaching, and how they can verify
this in student code. If it comes across that student artifacts do not match what our experts are
expecting, then we will also update the lessons to help facilitate more accurate learning.

Confidentiality
The information in the study records will be kept confidential to the full extent allowed by law.  Data
will be stored securely on an encrypted server stored in a locked room. All collected data will have
any remaining identifiers (email address) removed once the study is over.

Compensation
The participants will not receive compensation for participating in this study.

179



Yes, I agree to participate in this study.

No, I do not agree to participate in this study.

What if you have questions about this study?
If you have questions at any time about the study or the procedures, you may contact the
researcher, Veronica Catete, at vmcatete@ncsu.edu, or [919 820­2578].  

What if you have questions about your rights as a research participant?
 If you feel you have not been treated according to the descriptions in this form, or your rights as a
participant in research have been violated during the course of this project, you may contact Deb
Paxton, Regulatory Compliance Administrator at dapaxton@ncsu.edu or by phone at 1­919­515­
4514.

Consent To Participate
“I have read and understand the above information.  I agree to participate in this study with the
understanding that I may choose not to participate or to stop participating at any time without
penalty or loss of benefits to which I am otherwise entitled.”

Please enter you preferred email address for further contact

Lesson Unit Lists: Hangman Classic

Please review the topic 5  assignment from the CS Principles course, Beauty & joy of Computing
(BJC). 
If you have trouble accessing the lab please go to the link below. (see in context)

http://bjc.berkeley.edu/bjc­r/cur/programming/projects/hangman/hangman­classic.html?
topic=berkeley_bjc%2Flists%2Flists­I.topic 

Take a look at the list of learning objectives and essential knowledge points as defined in the AP CS
Principles Framework, paying special attention to Big Idea 5.  Learning objectives start on page 6.
We only ask about Big Ideas 1, 2, 4 and 5

Which learning objectives apply to this lesson?

Directions: Please drag items from the left­hand stack, and drop them into the right­hand groups.
 Place the top five items into the top group. If an item does not apply, slide it off to the left and it will
go to the bottom of the list.

180



I am familiar with both CS Principles and BJC.

I am familiar with CS Principles but not BJC.

I am familiar with BJC but not CS Principles.

I am familiar with NEITHER of these courses.

I have never taught CS Principles

1­2 years

2­3 years

3+ years

Items

23 / 23

Top Five objectives best demonstrated through this lesson

Applies to Lab 5 (Hangman)

Please rate your level of confidence on your answers to the previous question

1 ­ none 2 ­ low 3 ­ medium 4 ­ high 5 ­ expert

Are you familiar with the Computing Science Principles course or the Beauty & Joy of Computing.

How many years have you taught CS Principles?

Are you responsible for the creation of CS Principles or BJC?

Apply a creative development
process when creating
computational artifacts. [P2]

Create a computational artifact for
creative expression. [P2]
Create a computational artifact
using computing tools and
techniques to solve a problem.
[P2]

Create a new computational
artifact by combining or modifying
existing artifacts. [P2]

Collaborate in the creation of
computational artifacts. [P6]
Analyze the correctness, usability,
functionality, and suitability of
computational artifacts. [P4]

Use computing tools and
techniques for creative expression.
[P2]

Describe the variety of
abstractions used to represent
data. [P3]

Explain how binary sequences are
used to represent digital data. [P5]
Develop an abstraction when
writing a program or creating other
computational artifacts. [P2]

Use multiple levels of abstraction
to write programs. [P3]
Identify multiple levels of
abstractions that are used when
writing programs. [P3]

Use models and simulations to
represent phenomena. [P3]
Use models and simulations to
formulate, refine, and test
hypotheses. [P3]

Develop an algorithm for
implementation in a program. [P2]
Express an algorithm in a
language. [P5]
Develop a program for creative
expression, to satisfy personal
curiosity, or to create new
knowledge. [P2]

Develop a correct program to solve
problems. [P2]
Collaborate to develop a program.
[P6]
Explain how programs implement
algorithms. [P3]

Use abstraction to manage
complexity in programs. [P3]
Evaluate the correctness of a
program. [P4]
Employ appropriate mathematical
and logical concepts in
programming. [P1]

181



Yes to Both

CS Principles, but not BJC

Just BJC

Neither

Male

Female

White/Caucasian

African American

Hispanic

Asian

Native American

Pacific Islander

Other

Please enter the name of your University or Educational Institution  

Please indicate your occupation:

What is your gender?

What is your race?

182



Delphi Round 2: Hangman

Instructions for Round Two:
In Round Two, your objective is to RATE each of the competencies and objectives that were accepted and/or
voted on from Round One. Please do not be undeterred by the length; it should go quickly once you are used
to the format. You will rate the items from 1 ­ 5 on the following scale, where '1' represents the lowest degree
of importance and '5' represents the highest degree of importance:
1 ­ Strongly Disagree/This competency or objective should not be taught as part of the lesson
2 ­ Disagree/ This competency or objective may not be beneficial if taught through the lesson
3 ­ Neither Disagree nor Agree/ This competency or objective could or could not be taught in the lesson as is
4 ­ Agree/ This competency or objective could be beneficial if taught during this lesson
5 ­ Strongly Agree/ This competency or objective should be taught through this lesson

Please note that the newly voted competencies have space for you to select specific essential knowledge
components if you'd like to.

Please rate how much you agree or disagree with the following learning objectives for Lesson Unit 5
(Hangman). [1 Strongly Disagree – 5 Strongly Agree]

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Use abstraction to manage
complexity in programs. [P3]

Develop an abstraction when
writing a program or creating
other computational artifacts.
[P2]

Develop a correct program to
solve problems. [P2]

Use multiple levels of
abstraction to write programs.
[P3]

Develop an algorithm for
implementation in a program.
[P2]

Express an algorithm in a
language. [P5]

Employ appropriate
mathematical and logical
concepts in programming. [P1]

Develop a program for creative
expression, to satisfy personal
curiosity, or to create new
knowledge. [P2]

Describe the variety of
abstractions used to represent
data. [P3]

183



Based off of your rating for "use of abstraction to manage complexity in program," which essential
knowledge components can be successfully covered? [Select all that apply]

Please rate how much you agree or disagree with the following learning objectives for Lesson Unit 5
(Hangman). [1 Strongly Disagree – 5 Strongly Agree]

Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Identify multiple levels of
abstractions that are used
when writing programs. [P3]

Evaluate the correctness of a
program. [P4]

Create a computational artifact
using computing tools and
techniques to solve a problem.
[P2]

Explain how programs
implement algorithms. [P3]

Collaborate to develop a
program. [P6]

Analyze the correctness,
usability, functionality, and
suitability of computational
artifacts. [P4]

Use computing tools and
techniques for creative
expression. [P2]

Explain how binary sequences
are used to represent digital
data. [P5]

Based off of your rating for "Use multiple levels of abstraction to write programs," which essential knowledge com
successfully covered? [Select all that apply]

EK 2.2.2A Software is developed using multiple levels of abstractions, such as constants, expressions, statements, procedures, and libraries.
EK 2.2.2B Being aware of and using multiple levels of abstraction in developing programs helps to more effectively apply available resources a

EK 5.3.1A Procedures are reusable programming abstractions.
EK 5.3.1B A procedure is a named grouping of programming instructions.
EK 5.3.1C Procedures reduce the complexity of writing and maintaining programs.
EK 5.3.1D Procedures have names and may have parameters and return values.
EK 5.3.1E Parameterization can generalize a specific solution.
EK 5.3.1F Parameters generalize a solution by allowing a procedure to be used instead of duplicated code.
EK 5.3.1G Parameters provide different values as input to procedures when they are called in a program.
EK 5.3.1H Data abstraction provides a means of separating behavior from implementation.
EK 5.3.1J Integers and floating‑point numbers are used in programs without requiring understanding of how they are implemented.

184



      Strongly Disagree Disagree
Neither Agree nor

Disagree Agree Strongly Agree

Collaborate in the creation of
computational artifacts. [P6]    

Based off of your rating for "Employ appropriate mathematical and logical concepts in programming," which
essential knowledge components can be successfully covered? [Select all that apply]

Based off of your rating for "create a computational artifact for creative expression," which essential knowledge c

EK 1.2.1A A computational artifact is something created by a human using a computer and can be, but is not limited to, a program, an image, a
EK 1.2.1B Creating computational artifacts requires understanding of and use of software tools and services.
EK 1.2.1C Computing tools and techniques are used to create computational artifacts and can include, but are not limited to, programming inte

EK 5.5.1A Numbers and numerical concepts are fundamental to programming.
EK 5.5.1DMathematical expressions using arithmetic operators are part of most programming languages.
EK 5.5.1E Logical concepts and Boolean algebra are fundamental to programming.
EK 5.5.1F Compound expressions using and, or, and not are part of most programming languages.
EK 5.5.1G Intuitive and formal reasoning about program components using Boolean concepts helps in developing correct programs.
EK 5.5.1H Computational methods may use lists and collections to solve problems.
EK 5.5.1I Lists and other collections can be treated as abstract data types (ADTs) in developing programs.

185



Delphi Round 3: Hangman

Think about the hangman lesson and the most important learning objectives related to that.
 What would evidence of this learning look like in code?  how about at a high level? a low? 

http://bjc.berkeley.edu/bjc-r/cur/programming/projects/hangman/hangman-classic.html?
topic=berkeley_bjc%2Flists%2Flists-I.topic

Select the learning objective you would like to create "evidence for."  Refer to the AP CS
Principles Framework for more specific Essential Knowledge Components related the your
selected objective. 

Below are selected essential knowledge components to keep in mind: (you can use this as
a checklist)

Please upload a sample of snap code that demonstrates one of the above learning
objectives at a Low level (.xml, .txt, and image files accepted)

Use abstraction to manage complexity in programs. [P3]

Develop an algorithm for implementation in a program. [P2]

Express an algorithm in a language. [P5]

Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]

Develop an abstraction when writing a program or creating other computational artifacts. [P2]

EK 5.3.1A Procedures are reusable programming abstractions.

EK 5.3.1C Procedures reduce the complexity of writing and maintaining programs.

EK 5.3.1D Procedures have names and may have parameters and return values.

EK 5.5.1DMathematical expressions using arithmetic operators are part of most programming
languages.

EK 5.5.1E Logical concepts and Boolean algebra are fundamental to programming.

EK 5.5.1G Intuitive and formal reasoning about program components using Boolean concepts
helps in developing correct programs.

186



Powered by Qualtrics

Please upload a sample of snap code that demonstrates one of the above learning
objectives at a Medium level

Please upload a sample of snap code that demonstrates one of the above learning
objectives at a High level

187



B.2 Study 5 (Rubric Use) Consent forms and Survey instruments

pg. 189 BJC Rubric Evaluation Pre Survey - CSP Teachers

pg. 196 BJC Rubric Evaluation Pre Survey - STEM Education Majors (Similar to Previous)

pg. 203 Binary Conversion Grading Activity - Sample 1

pg. 207 Binary Conversion Grading Activity - Sample 2

pg. 211 Binary Conversion Grading Activity - Sample 3

pg. 215 BJC Rubric Evaluation Post Survey - CSP Teachers

pg. 250 BJC Rubric Evaluation Post Survey - STEM Education Majors (Similar to Previous)

188



Participant Consent

We would like to invite you to take part in a research study, which concerns how new
computer science principles teachers recognize computational thinking in the Beauty and
Joy of Computing course taught in high schools.

INFORMATION
If you agree to participate in this research, we will ask you:
· To complete two online surveys.  The surveys will ask you about your teaching
experiences and to complete a short grading task. Surveys should take about 15-20
minutes to complete.
· Complete a guided-grading activity using our newly refined rubric materials
· (optional) Provide grade and assignment information to the researchers for snap
programming tasks assigned to your course.
Participation will take approximately 1 hour with the opportunity to continue in additional
research studies.

RISKS
There is minimal risk associated with this research.  Any identifying information collected
will not be retained past the point at which we identify and contact a raffle winner.

For teachers submitting sample student assignments, any samples submitted should not
contain identifying information (names, email, etc.).  No personal information or student
cross-reference will be left on the samples. We ask that teachers try to anonymize their
optional class data prior to submission.  If teachers have grades associated with the sample
projects, they can be added in an excel sheet containing the name of the project and the
grade given.  Sample student coding data will be added to our existing collection securely
stored on a password protected and encrypted server located in our card-access research
lab, and will be used by researchers to provide data-driven hints for the Snap! programming
tool (snap.berkeley.edu) and identify common patterns and themes.

BENEFITS
You will likely benefit from what you learn during the guided grading activity, as well as
technical support you receive after the project, and the encouragement and collegiality from
interacting with the researchers/professors and other teachers in the project. You may feel
special in being involved in a research study with personnel from a major university. 
Additionally, what we learn from this study likely will benefit you directly in terms of

BJC Rubric Evaluation - PreSurvey: CSP Teachers

189



increasing your classroom skills and furthering you professionally through participation in a
research project.
 
COMPENSATION
Participants who complete the study will be entered into a raffle to receive a $500 gift card
or equivalent valued prize. Participants may recruit additional participants in order to receive
extra entries into the raffle. Each recruit who completes the study will earn you 1 additional
entry into the raffle.
 
CONFIDENTIALITY                                             
The information in the study records will be kept strictly confidential. Survey data will be
stored securely in locked cabinets or on a secure server, in the case of digital data all
participants will be referred to with pseudonyms. Data will be coded, findings will form the
basis for research papers. 
 
CONTACT
If you have questions at any time about the study or the procedures, you may contact the
researcher, Dr. Tiffany Barnes, at 2401 EB3, Campus Box 8206, North Carolina State
University, Raleigh, 27695 or tmbarnes@ncsu.edu, or Veronica Catete at
vmcatete@ncsu.edu. If you feel you have not been treated according to the descriptions in
this form, or your rights as a participant in research have been violated during the course of
this project, you may contact Deb Paxton, Regulatory Compliance Administrator, Box 7514,
NCSU Campus (919/515-4514).
 
PARTICIPATION
Your participation in this study is voluntary; you may decline to participate without penalty. If
you decide to participate, you may withdraw from the study at any time without penalty and
without loss of benefits to which you are otherwise entitled. 

CONSENT

"I have read and understand the above information. I agree to participate in this study with the understanding that I may withdraw at any

time."

Please enter your preferred email address for future correspondance

Yes, I agree to participate in this study.

No, I do not agree to participate in this study.

190



Easy - Binary

Please use the following lab description to help answer the  question below.

Rearrange these Code Snippets of the Binary lab below in order of best code to worst code
(1 = best code, 3 = worst code).

Binary Lab Description 

 

 

 

191



Mid - Menu

Please use the following lab description to help answer the  question below.

Rearrange these Code Snippets of the Subsets of a List lab below in order of best code to
worst code (1 = best code, 3 = worst code).

Menu Lab Description 

 

 

192



Hard - Snowflake

Please use the following lab description to help answer the  question below.

Rearrange these Code Snippets of the Snowflake lab below in order of best code to worst
code (1 = best code, 3 = worst code).

 

Snowflake Lab Description 

 

193



Participant Information

What is the highest level of school you have completed or the highest degree you have
received? 

How many years have you taught CS Principles/BJC?

 

 

High school graduate (high school diploma or equivalent including GED)

Some college but no degree

Associate degree in college (2-year)

Bachelor's degree in college (4-year)

Master's degree

Doctoral degree

I have never taught CS Principles

1-2 years

194



Powered by Qualtrics

What subject matter do you usually teach (Chemistry, Algebra, Biology, Business)?

Please list any additional teaching qualifications or certifications that you may have

Choose one or more races that you consider yourself to be:

Are you Spanish, Hispanic, or Latino or none of these?

Please select your gender:

2-3 years

3+ years

White Asian

Black or African American Native Hawaiian or Pacific Islander

American Indian or Alaska Native Other 

Yes

None of these

Male

Female

195



Participant Consent

We would like to invite you to take part in a research study, which concerns how new computer science principles teachers

recognize computational thinking in the Beauty and Joy of Computing course taught in high schools.

INFORMATION
If you agree to participate in this research, we will ask you:

· To complete two online surveys.  The surveys will ask you about your teaching experiences and to complete a short grading

task. Surveys should take about 15­20 minutes to complete.

· Complete a guided­grading activity using our newly refined rubric materials

· (optional) Provide grade and assignment information to the researchers for snap programming tasks assigned to your

course.

Participation will take approximately 1 hour with the opportunity to continue in additional research studies.

RISKS
As with all research, there is a chance that confidentiality could be compromised; however, we are taking precautions to

minimize this risk.

BENEFITS
You will likely benefit from what you learn during the guiding grading activity, as well as technical support you receive after the

project, and the encouragement and collegiality from interacting with the researchers/professors and other teachers in the

project. You may feel special in being involved in a research study with personnel from a major university.  Additionally, what we

learn from this study likely will benefit you directly in terms of increasing your classroom skills and furthering you professionally

through participation in a research project.

COMPENSATION
Participants who complete the study will receive a $15 gift card. Participants may also receive up to an additional $5 by providing

the name and contact information for friends who will be invited to complete the study.

CONFIDENTIALITY         
The information in the study records will be kept strictly confidential. Survey data will be stored securely in locked cabinets or on

a secure server, in the case of digital data, all participants will be referred to with pseudonyms. Data will be coded, findings will

form the basis for research papers. 

CONTACT
If you have questions at any time about the study or the procedures, you may contact the researcher, Dr. Tiffany Barnes, at 2401

EB3, Campus Box 8206, North Carolina State University, Raleigh, 27695 or tmbarnes@ncsu.edu, or Veronica Catete at

BJC Rubric Evaluation - PreSurvey: STEM Majors

196



vmcatete@ncsu.edu. If you feel you have not been treated according to the descriptions in this form, or your rights as a

participant in research have been violated during the course of this project, you may contact Deb Paxton, Regulatory

Compliance Administrator, Box 7514, NCSU Campus (919/515­4514).

 
PARTICIPATION
Your participation in this study is voluntary; you may decline to participate without penalty. If you decide to participate, you may

withdraw from the study at any time without penalty and without loss of benefits to which you are otherwise entitled. 

CONSENT

"I have read and understand the above information. I agree to participate in this study with the understanding that I may

withdraw at any time."

Please enter your preferred email address for future correspondance

Easy - Binary

Please use the following lab description to help answer the  question below.

Rearrange these Code Snippets of the Binary lab below in order of best code to worst code
(1 = best code, 3 = worst code).

Yes, I agree to participate in this study.

No, I do not agree to participate in this study.

Binary Lab Description 

 

197



Mid - Menu

Please use the following lab description to help answer the  question below.

Rearrange these Code Snippets of the Subsets of a List lab below in order of best code to
worst code (1 = best code, 3 = worst code).

 

 

Menu Lab Description 

198



Hard - Snowflake

Please use the following lab description to help answer the  question below.

 

 

 

Snowflake Lab Description 

199



Rearrange these Code Snippets of the Snowflake lab below in order of best code to worst
code (1 = best code, 3 = worst code).

Participant Information

 

 

 

200



What is the highest level of school you have completed or the highest degree you have
received? 

What is your classification?

How many years have you taught CS Principles/BJC?

What subject matter do you currently teach or plan to teach (Chemistry, Algebra, Biology,
Business)?

Please list any additional teaching qualifications or certifications that you may have

Choose one or more races that you consider yourself to be:

High school graduate (high school diploma or equivalent including GED)

Some college but no degree

Associate degree in college (2-year)

Bachelor's degree in college (4-year)

Master's degree

Doctoral degree

Freshman

Sophomore

Junior

Senior

Other 

I have never taught CS Principles

1-2 years

2-3 years

3+ years

201



Powered by Qualtrics

Are you Spanish, Hispanic, or Latino or none of these?

Please select your gender:

White Asian

Black or African American Native Hawaiian or Pacific Islander

American Indian or Alaska Native Other 

Yes

None of these

Male

Female

202



Binary Conversion Sample #1

Binary Conversion Sample #1 - Code View, Binary Lab Description, Binary Rubric  
 

Using the above rubric, please re-evaluate the sample lab submission. As you evaluate the
program, use the questions below to highlight the code or elements of code that you think
pertain to each grading category. 

Please select the rating that you gave for each category of the rubric on the study page.
Then, select each code region that impacted that decision. 

Abstraction

Please select the regions of code you used to make a decision for 'Abstraction'

Visual

0 1 2 3 4

0 2 4

203



Please select the regions of code you used to make a decision for 'Visual'

Mathematics

Please select the regions of code you used to make a decision for 'Mathematics'

0 1 2 3 4

204



Use of Parameters 

Please select the regions of code you used to make a decision for 'Use of Parameters'

Style/Layout

Please select the regions of code you used to make a decision for 'Style/Layout'

0 1 2 3 4

0 1 2 3 4

205



Powered by Qualtrics

Naming

Please select the regions of code you used to make a decision for 'Naming'

0 2 4

206



Binary Conversion Sample #2

Binary Conversion Sample #2 - Code View, Binary Lab Description, Binary Rubric 

Using the above rubric, please re-evaluate the sample lab submission. As you evaluate the
program, use the questions below to highlight the code or elements of code that you think
pertain to each grading category. 

Please select the rating that you gave for each category of the rubric on the study page.
Then, select each code region that impacted that decision. 

Abstraction

Please select the regions of code you used to make a decision for 'Abstraction'

Visual

Please select the regions of code you used to make a decision for 'Visual'

0 1 2 3 4

0 2 4

207



Mathematics

Please select the regions of code you used to make a decision for 'Mathematics'

Use of Parameters 

Please select the regions of code you used to make a decision for 'Use of Parameters'

0 1 2 3 4

0 1 2 3 4

208



Style/Layout

Please select the regions of code you used to make a decision for 'Style/Layout'

Naming

Please select the regions of code you used to make a decision for 'Naming'

0 1 2 3 4

0 2 4

209



Powered by Qualtrics

210



Binary Conversion Sample #3

Binary Conversion Sample #3 - Code View, Binary Lab Description, Binary Rubric 

Using the above rubric, please re-evaluate the sample lab submission. As you evaluate the
program, use the questions below to highlight the code or elements of code that you think
pertain to each grading category. 

Please select the rating that you gave for each category of the rubric on the study page.
Then, select each code region that impacted that decision. 

Abstraction

Please select the regions of code you used to make a decision for 'Abstraction'

Visual

Please select the regions of code you used to make a decision for 'Visual'

0 1 2 3 4

0 2 4

211



Mathematics

Please select the regions of code you used to make a decision for 'Mathematics'

Use of Parameters 

Please select the regions of code you used to make a decision for 'Use of Parameters'

0 1 2 3 4

0 1 2 3 4

212



Style/Layout

Please select the regions of code you used to make a decision for 'Style/Layout'

Naming

Please select the regions of code you used to make a decision for 'Naming'

0 1 2 3 4

0 2 4

213



Powered by Qualtrics

214



Pascal Triangle

Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #1. Refer
to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

0 1 2 3 4
Abstraction
Visual
Mathematics
Use of Parameters
Style/Layout
Naming

BJC Rubric Evaluation - PostSurvey: CSP Teachers

215



Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

216



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

217



Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #2. Refer

to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

218



Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

219



Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #3. Refer

to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

220



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

221



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

222



Please select the regions that influenced your decision to make the rating for 'Naming'

TicTacToe

Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #1. Refer to

the Tic Tac Toe Lab Description as needed. 

     0 1 2 3 4
Abstraction   
Visual   

223



Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

     0 1 2 3 4
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

224



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #2. Refer to

the Tic Tac Toe Lab Description  as needed. 

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

225



226



Please select the regions that influenced your decision to make the rating for 'Visual'

227



Please select the regions that influenced your decision to make the rating for 'Mathematics'

228



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

229



230



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

231



Please select the regions that influenced your decision to make the rating for 'Naming'

232



Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #3. Refer to

the Tic Tac Toe Lab Description as needed. 

     0 1 2 3 4

233



Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

234



Please select the regions that influenced your decision to make the rating for 'Visual'

235



Please select the regions that influenced your decision to make the rating for 'Mathematics'

236



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

237



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

238



Please select the regions that influenced your decision to make the rating for 'Naming'

239



CCurve

Please enter the rating for each category of the C-Curve Rubric  for Sample #1. Refer to the C-Curve
Lab Description  as needed. 

     0 1 2 3 4

240



Please select the regions that influenced your decision to make the rating for 'Abstraction '

Please select the regions that influenced your decision to make the rating for 'Visual '

Please select the regions that influenced your decision to make the rating for 'Mathematics'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

241



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

242



Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the C-Curve Rubric for Sample #2. Refer to the C-Curve
Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

243



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

244



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

245



Please enter the rating for each category of the C-Curve Rubric  for Sample #3. Refer to the C-Curve
Lab Description  as needed. 

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

246



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

247



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

248



Powered by Qualtrics

Block 3

How did you find out about this survey?

To help us link your survey to information provided in the pre-survey. Please re-enter your
email address.

For additional entries into the $500 raffle, you may enter the email address for new
participants. For each participant that completes the survey, you will be given 1 additional
entry. Please separate each email address with a semi-colon ' ; '

Through a mailing list

Forwarded by a friend or colleague

Read a Post in a discussion forum

Suggested Email Addresses to Recruit

249



Pascal Triangle

Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #1. Refer
to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

0 1 2 3 4
Abstraction
Visual
Mathematics
Use of Parameters
Style/Layout
Naming

BJC Rubric Evaluation - PostSurvey: STEM Majors

250



Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

251



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

252



Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #2. Refer

to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

253



Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

254



Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the Pascal Triangle Rubric  for Sample #3. Refer

to the Pascal Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

255



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

256



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

257



Please select the regions that influenced your decision to make the rating for 'Naming'

TicTacToe

Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #1. Refer to

the Tic Tac Toe Lab Description as needed. 

     0 1 2 3 4
Abstraction   
Visual   

258



Please select the regions that influenced your decision to make the rating for 'Abstraction'

Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

     0 1 2 3 4
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

259



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #2. Refer to

the Tic Tac Toe Lab Description  as needed. 

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

260



261



Please select the regions that influenced your decision to make the rating for 'Visual'

262



Please select the regions that influenced your decision to make the rating for 'Mathematics'

263



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

264



265



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

266



Please select the regions that influenced your decision to make the rating for 'Naming'

267



Please enter the rating for each category of the Tic Tac Toe Rubric  for Sample #3. Refer to

the Tic Tac Toe Lab Description as needed. 

     0 1 2 3 4

268



Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

269



Please select the regions that influenced your decision to make the rating for 'Visual'

270



Please select the regions that influenced your decision to make the rating for 'Mathematics'

271



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

272



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

273



Please select the regions that influenced your decision to make the rating for 'Naming'

274



CCurve

Please enter the rating for each category of the C-Curve Rubric  for Sample #1. Refer to the C-Curve
Lab Description  as needed. 

     0 1 2 3 4

275



Please select the regions that influenced your decision to make the rating for 'Abstraction '

Please select the regions that influenced your decision to make the rating for 'Visual '

Please select the regions that influenced your decision to make the rating for 'Mathematics'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

276



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

277



Please select the regions that influenced your decision to make the rating for 'Naming'

Please enter the rating for each category of the C-Curve Rubric for Sample #2. Refer to the C-Curve
Lab Description as needed.

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

278



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

279



Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

280



Please enter the rating for each category of the C-Curve Rubric  for Sample #3. Refer to the C-Curve
Lab Description  as needed. 

Please select the regions that influenced your decision to make the rating for 'Abstraction'

     0 1 2 3 4
Abstraction   
Visual   
Mathematics   
Use of Parameters   
Style/Layout   
Naming   

281



Please select the regions that influenced your decision to make the rating for 'Visual'

Please select the regions that influenced your decision to make the rating for 'Mathematics'

Please select the regions that influenced your decision to make the rating for 'Use of
Parameters'

282



Please select the regions that influenced your decision to make the rating for 'Style/Layout'

Please select the regions that influenced your decision to make the rating for 'Naming'

283



Powered by Qualtrics

Block 3

How did you find out about this survey?

To help us link your survey to information provided in the pre-survey. Please re-enter your
email address.

Participants may also receive up to an additional $5 by providing the name and contact
information for a STEM education major or teacher who will be invited to complete the study. 
 Please separate each email address with a semi-colon ' ; '

Through a mailing list

Forwarded by a friend or colleague

Read a Post in a discussion forum

Suggested Email Addresses to Recruit

284


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Research
	Contributions

	Literature Review
	CS Principles
	Beauty & Joy of Computing

	Measuring Computational Thinking
	Delphi
	Classic Delphi
	Criticisms of Delphi
	Applications of Delphi

	Discussion on CS Education

	Study 1: Systematic Rubric Development for CS Principles
	Introduction
	Brick Wall Assignment

	Rubric Creation 
	Rubrics in CS Ed
	Criteria Selection 
	Performance Descriptions

	Study Design and Methods
	Context and Data Sources
	Methods

	Results
	Code Examples
	Rubric Refinement

	Conclusions and Future Work

	Study 2: Task vs. Learning Based Rubric Evaluation
	Introduction
	Background
	Summer 2015 Delphi
	The Panelists
	Hangman Lab Description
	Survey Rounds

	Rubric Evaluation Methods
	Results
	Performance-Based Rubric Results
	Learning-Based Rubric Results
	Between Rubrics

	Discussion
	Reliability
	Ease of use
	Score distribution

	Conclusions

	Study 3: Delphi Methods in CS Principles Rubric Creation
	Introduction
	Background
	U.S. K-12 Computing Teachers
	Computational Thinking Rubrics
	Delphi Process

	Methods
	Lab Assignment Descriptions
	Panelists
	Survey Rounds
	Delphi Application
	Rubric Evaluation

	Results
	Discussion
	Delphi Process
	Effectiveness of Rubrics
	Cost-Benefit Analysis of Methods

	Conclusions and Future Work

	Study 4: A Streamlined Approach to the Systematic Creation of Rubrics for CS Principles
	Introduction
	Background
	Rubrics in CS
	NGT vs. Delphi

	Methods 
	Training new 'Masters'
	Streamlining the Process
	Quality Assurance

	Results and Discussion
	A Modified NGT
	Rubric Quality and Distribution
	Limitations

	Conclusions and Future Work

	Study 5: An Evaluation of BJC Rubrics with Active CS Principles Teachers
	Introduction
	Methods
	Participant Procedure
	Lab Assignment Descriptions

	Results
	Intra-class correlations
	Heat Mapping and Visualization Analysis

	Discussion
	Conclusions

	Rubric Development Assessment Using WoCA
	Introduction
	Background
	Reliability
	Validity
	Low-Stakes Problem-Based Assessments

	Measuring Criteria for Assessment
	Why Rigorously Evaluate Rubrics
	How to Evaluate Rubrics Meaningfully

	Aligning Research to the Wheel of Competency Assessment
	Discussion
	Conclusions
	Future Work

	Conclusions
	Review
	Research Questions
	Hypotheses
	Contributions
	Future Work

	Bibliography
	APPENDICES
	Resources
	Beauty and Joy of Computing Lesson Plans

	Survey Instruments
	Study 3 (Delphi) Consent forms and Survey instruments
	Study 5 (Rubric Use) Consent forms and Survey instruments


