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Abstract

In this paper� we give a recurrence to enumerate the set G�n� of partitions of a
positive even integer n which are the degree sequences of simple graphs� The recurrence
gives rise to an algorithm to compute the number of elements of G�n� in time O�n��
using space O�n��� This appears to be the �rst method for computing jG�n�j in time
bounded by a polynomial in n� and it has enabled us to tabulate jG�n�j for even n � ����

� Introduction

A partition of a positive integer n is a sequence of positive integers ���� ��� � � � � �l� satisfying

�� � �� � � � � � �l and �� � �� � � � �� �l � n� Let P �n� denote the set of all partitions of

n� P ��� contains only the empty partition� �� A partition � � P �n� is graphical if it is the

degree sequence of some simple undirected graph� For example� ��� 	� 	� 
� 
� �� is the degree

sequence of the graph in Figure ��a�� but ��� 	� 	� �� �� �� is not graphical� Clearly� graphical

partitions exist only when n is even� since the sum of the degrees of the vertices of a graph

is equal to twice the number of edges� Let G�n� denote the set of graphical partitions of n�

For convenience� we will call the empty partition graphical� so that jG���j� ��

Several necessary and su
cient conditions to determine whether an integer sequence is

graphical are surveyed in �SH�� Perhaps the best known is the following condition due to

Erd�os and Gallai �EG��
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Figure �� �a� A graph with degree sequence � � ��� 	� 	� 
� 
� �� and �b� the Ferrars graph
of ��

�Erd�os � Gallai� A positive integer sequence ���� ��� � � � � �l�� with �� � �� � � � � � �l� is

graphical if and only if �� � �� � � � �� �l is even and for � � j � l�

jX

i��

�i � j�j � �� �
lX

i�j��

minfj� �ig�

In Section �� we use a lesser�known condition to devise a recurrence to enumerate G�n�� As

shown in Section 
� it can be used to count G�n� in time O�n�� using space O�n���

Our work was motivated by the following question� originally posed by Herbert Wilf�

which remains open�

�Question� What fraction of the elements of P �n� are graphic� In particular� does the

ratio jG�n�j�jP �n�j approach � as n approaches in�nity�

To even plot the ratio jG�n�j�jP �n�j� it is necessary to compute jG�n�j� which� in our

initial attempts� became a computational burden well before n � ���� Using an earlier

version of the recurrence� we were able to compute jG�n�j up to n � ���� These results

are tabulated in Section 	� Where su
cient memory is available� computing jG�n�j up to

n � ���� should be feasible�

For a related counting problem� we note that Stanley �St� has obtained a generating

function for f�n�� the number of sequences �x�� x�� � � � � xn� which are degree sequences of

simple graphs with vertex set fv�� v�� � � � � vng� Here� xi is the degree of vertex vi and the

degree sequence is not necessarily nonincreasing�
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� The Recurrence

For a partition � � ���� � � � � �l�� the associated Ferrars graph is an array of l rows of dots�

where row i has �i dots and rows are left justi�ed �Figure ��b��� Let �� denote the conjugate

partition �� � ����� � � � � �
�
m� where m � �� and ��i is the number of dots in the i�th column

of the Ferrars graph of �� The Durfee square of � is the largest square subarray of dots in

the Ferrars graph of �� Let d��� denote the size �number of rows� of the Durfee square of

�� The sequence

��� � ���� �� � ���� � � � � �d��� � ��d����

is the sequence of successive ranks of � �At�� It will be convenient to work with the negatives

of the ranks� so� for � � i � d���� let ri��� � ��i��i� We call �r����� � � �rd������� the sequence

of successive antiranks of ��

The necessary and su
cient condition below� attributed to Nash�Williams� is proved in

�RA�� and �SH��

�Nash�Williams� A partition � of an even integer is graphical if and only if for � � j �
d����

jX

i��

ri��� � j�

�This condition is called the H�asselbarth Criterion by the authors of �SH� since they �rst saw

it in �Has�� where it appeared without proof�� It can be shown that for � � j � d���� the j�th

Nash�Williams condition is equivalent to the j�th Erd�os�Gallai condition� Furthermore� if

conditions �� �� � � � � d��� of Erd�os�Gallai are satis�ed� then so are the remaining Erd�os�Gallai

conditions �RA���

Let P �n� k� l� be the set of partitions of n into at most l parts with largest part at most

k and de�ne G�n� k� l� to be the set of graphical partitions in P �n� k� l�� Let � � P �n� k� l�

and let � be obtained from � by deleting the �rst row and column of the Ferrars graph of

�� Then d��� � d���� �� Let s � r���� � ��� � ��� By the Nash�Williams condition� � is

graphical if and only if s � � and for � � j � d���� the antiranks of � satisfy an s�variant

of the Nash�Williams conditions�

s �
jX

i��

ri��� � j�
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With this in mind� de�ne P �n� k� l� s� for s � � by

P �n� k� l� s� � f � � P �n� k� l� j s �
jX

i��

ri��� � j for � � j � d���g�

Let P �n� k� l� s� � � if s � � and note that for s � �� P �n� k� l� s� � f�g if P �n� k� l� � f�g�
Lemma � below is a restatement of the Nash�Williams condition and Lemma � follows

since G�n� � G�n� n� n��

Lemma � For even n � �� G�n� k� l� � P �n� k� l� ���

Lemma � For even n � �� G�n� � P �n� n� n� ���

Thus� we can compute jG�n�j by computing jP �n� k� l� s�j for appropriate values of the
arguments� To this end� let P ��n� k� l� and P ��n� k� l� s�� be the subsets of P �n� k� l� and

P �n� k� l� s�� respectively� consisting of those partitions into exactly l parts with largest part

of size exactly k�

Lemma � For n � � and � � k� l� s� n�

jP �n� k� l� s�j � jP ��n� k� l� s�j � jP �n� k��� l� s�j � jP �n� k� l��� s�j � jP �n� k��� l��� s�j�

Proof� �From the de�nitions of P and P � we have

P �n� k� l� s� n P ��n� k� l� s� � P �n� k � �� l� s� � P �n� k� l� �� s��

The set on the left�hand side of this equality has size

jP �n� k� l� s�j � jP ��n� k� l� s�j

and by inclusion�exclusion� the set on the right�hand side of the equality has size

jP �n� k� �� l� s�j � jP �n� k� l� �� s�j � jP �n� k� �� l� s� � P �n� k� l� �� s�j�

The result follows since the intersection in the last term is P �n� k � �� l� �� s�� �

Lemma 	 Assume n � �� � � k� l�� n� and s � �� Then

jP ��n� k� l� s�j � jP �n� k � l � �� k � �� l� �� s � l � k � ��j�
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Proof� De�ne a function f on P ��n� k� l� by f��� � �� where � is obtained from � by

deleting the �rst row and column in the Ferrars graph of �� Given the assumptions of the

theorem� if P ��n� k� l� � � then either ��� n � k� l��� in which case n�k� l�� � � or ���

n � kl� which implies n� k� l�� � kl� k� l�� � �k� ���l� ��� In either of these cases�

P �n� k� l� �� k� �� l� �� � �� If P ��n� k� l� contains only the partition �k� �� � � � � ��� then

f��k� �� � � � � ��� � �� n � k � l� � � �� and P �n� k � l� �� k� �� l� �� � f�g� Otherwise�
d��� � d��� � � and � � ���� � � ��m� where m � ��� � �� �i � �i�� � � for � � i � m

and ��i � ��i�� � � for � � i � d���� �� Clearly� f is a bijection between P ��n� k� l� and

P �n � k � l� �� k � �� l � �� Furthermore� for � � j � d����

s �
jX

i��

���i � �i� � �s� l � k� �
jX

i��

���i � �i�

� �s� l � k� �
jX

i��

����i � ��� ��i � ���

� �s� l � k� �
j��X

i��

���i � �i��

Thus

s �
jX

i��

ri��� � j �	

�s� l � k � �� �
j��X

i��

ri��� � j � ��

This establishes that � � P ��n� k� l� s��	 � � P �n�k� l��� k��� l��� s� l�k����

�

Lemma 
 P �n� k� l� � P �n� k� l� n� � P �n� k� l� s� for s � n�

Proof� Note that for any � � P �n� k� l� and � � j � ��d��

jX

i��

���i � �i � �� �
jX

i��

��i � �n�

Thus� � � P �n� k� l� n�� which means P �n� k� l� 
 P �n� k� l� n�� By de�nition� for t� � t � ��

P �n� k� l� t�
 P �n� k� l� t��� thus for any s � n� P �n� k� l� n�
 P �n� k� l� s�� The result follows

since P �n� k� l� s� 
 P �n� k� l�� �

The resulting recurrence for counting jP �n� k� l� s�j is given in the following�
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Theorem � jP �n� k� l� s�j is de�ned by�

jP �n� k� l� s�j�
if ��n � �� or �k � �� or �l � �� or �s � ��� then � � ���

else if n � � then� � ���

else if �k � �� or �l � �� then� � �
�

else if �k � n� then� jP �n� n� l� s�j �	�

else if �l � n� then� jP �n� k� n� s�j ���

else if �s � n� then� jP �n� k� l� n�j ���

else� jP �n� k � �� l� s�j� jP �n� k� l� �� s�j � jP �n� k� �� l� �� s�j ���

�jP �n � k � l� �� k � �� l� �� s� l � k � ��j

Proof� P �n� k� l� s� was de�ned to be empty when s � �� For the remaining conditions in ���

through ��� the value of jP �n� k� l� s�j is clear� Condition ��� follows from Lemma �� For the

general case ���� equate jP ��n� k� l� s�j in Lemmas 
 and 	 and then solve for jP �n� k� l� s�j�
�

� The Algorithm

The recurrence of Theorem � for computing jP �n� k� l� s�j has a straightforward implemen�

tation as a dynamic programming algorithm which �lls a 	�dimensional table of entries

T �a� b� c� d� � jP �a� b� c� d�j where � � a � n� � � b � k� � � c � l� and � � d � n�

The table is �lled in any order which guarantees that when the time comes to �ll entry

T �n�� k�� l�� s��� the required entries T �n�� k�� �� l�� s��� T �n�� k�� l�� �� s��� T �n�� k�� �� l�� �� s���

and T �n�� k� � l�� �� k�� �� l�� �� s�� l�� k� � �� have already been �lled and can be read

from the table� The table uses space O�n�kl� and only constant time is required to �ll in

each entry� In particular� computing jG�n�j � jP �n� n� n� ��j takes time and space O�n���

The space can be asymptotically improved as follows� For � � c � l� let Tc be the


�dimensional table of entries Tc�a� b� d� � jP �a� b� c� d�j for � � a � n� � � b � k� and

� � d � n� Then jP �n� k� l� s�j can be computed by computing successively the tables

T	� T�� � � �Tl� Note from the recurrence of Theorem � that computing entries in table Tc

requires access only to values in table Tc or table Tc��� Thus� in computing jP �n� k� l� s�j�
no more than two 
�dimensional tables need to be stored at any given time� reducing the
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space required to O�n�k�� Thus� computing jG�n�j can be done in O�n�� time with O�n��

space�

� Concluding Remarks

Even with this polynomial time algorithm� computing jG�n�j for n � ��� quickly becomes

impractical because of the huge space requirements� An additional burden on space is that

jG�n�j gets large quickly so that some method must be used to manipulate and allocate

enough storage for these large numbers� The following strategy was suggested by the referee�

Select small primes p� � p� � � � � � ps so that p�p� � � � ps � G�n�� For i � �� � � � � s� use

the recurrence of Theorem � to compute Gi�n� � G�n� mod �pi�� Then by the Chinese

Remainder Theorem� G�n� can be recovered from G��n�� � � � � Gs�n�� If� for example� the

primes can be represented with � bits� time O�n�� will be spent computing each of s tables�

but the 
�dimensional tables now need store only ��bit integers�

For those interested in the values jG�n�j� or in the ratio jG�n�j�jP �n�j from the open

question of Section �� we include Tables � and �� To the best of our knowledge� the values

had previously been computed only through n � 	�� as noted in �ER� in an acknowledgement

to Ron Read� �From the data� it seems reasonable to make the conjecture that for even

n � ��� jG�n�j�jP �n�j is monotone decreasing� but we are not aware of any proof of this�

The best results known at this time are that

limn��

p
n jG�n�j
jP �n�j � �p

�

�so the ratio cannot go to � faster than ��
p
n �ER�� and that �RA��

limn��
jG�n�j
jP �n�j � ����
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Table �� Sizes of G�n� and P �n� and their ratio for � � n � ����
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Table �� Sizes of G�n� and P �n� and their ratio for ��� � n � ����
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