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Abstract

Given a positive even integer n, we show how to generate the set G(n) of graphical
partitions of n, that is, those partitions of n which correspond to the degree sequences
of simple, undirected graphs. The algorithm is based on a recurrence for G(n), and the
total time used by the algorithm, independent of output, is O(|G(n)|), which is constant
average time per graphical partition. This is the first algorithm shown to achieve such
efficiency for generating G(n) and the direct approach differs from earlier “generate and
reject” schemes and the “interval/gap” approach.

1 Introduction

A partition © of a positive integer n is a sequence ™ = (w1, 73,...,m) of positive integers
satisfying my > m9 > ... > mand my+ 72 +. ..+ 7 = n. A partition 7 of an even integer n is
called graphical if it is the degree sequence of some simple undirected graph. For example,
T = (5,4,4,3,3,1) is graphical, whereas 7 = (5,4,4,2,2,1) is not. We let G(n) denote
the set of graphical partitions of n. For convenience, we will call the empty partition, A,
graphical, so that |G(0)| = 1.

Earlier work has been concerned both with counting G(n) and with generating the

elements of G(n). Most of this work is based on some necessary and sufficient condition
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for a partition to be graphical. Several of these conditions, including the one below, are

surveyed and shown to be equivalent in [SH].

Theorem 1 (Erdos and Gallai [EG]) A positive integer sequence (w1, 72, ..., m1), with
T > Ty > ... > 7y, 18 graphical if and only if Ty + 79+ ...+ 7 is even and for 1 < j </,

J !
Yom < -1+ Y min{j,m}.
=1

1=7+1

To either count or generate G/(n), one could generate all partitions of n and use Theorem 1
to test each and delete those which are not graphical. It is possible to implement this test
in time O(n), giving a total time of O(n|P(n)|), where P(n) is the set of all partitions of n.
Thus the time spent per element of G(n) is O(n|P(n)|/|G(n)|). How efficient this is depends
on two things. First, the O(n) time spent per test may be a gross overestimate, so that a
more careful amortized analysis would perhaps show that on the average, the time spent
testing an element of P(n) was constant. Secondly, the efficiency of this generating scheme
depends on the asymptotic behavior of the ratio | P(n)|/|G(n)|. However, to determine the
limiting behavior of |G(n)|/|P(n)|is an open problem, originally posed by H. Wilf. Some

upper and lower bounds are known: A result of Erdés and Richmond [ER] establishes that
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(where II here denotes the area of the unit circle) and Rousseau and Ali [RA] show that

—  |G(n)|
m, o —= < .25.
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If the elements of P(n) are generated in lexicographic order, it has been observed that
the graphical partitions appear in groups of contiguous subsequences, called intervals, sep-
arated by gaps of non-graphical partitions. Earlier work attempted to identify partitions
at the boundaries of these subsequences in order to either “jump” the gaps or to count the
partitions in the intervals [MS]. In [St], the number of graphical partitions of even n with
exactly [ parts is tabulated for 1 < [ < n/2 < 27 and the largest value appearing in the
table is 12,287, when [ = 16 and n = 54.

Both counting and generating can now be done without explicit consideration of intervals

and gaps. In [BS] we developed a recurrence which allowed |G(n)| to be computed in time



O(n*) using O(n?) space. This was a substantial improvement over both the “generate and
test” approach, which requires time Q(|P(n)|), and the approach of identifying/counting
partitions in intervals, since the number of intervals appears to grow faster than polynomial.
In [BS], |G(n)| is tabulated for even n through n = 220 and |G(220)| = 7,443,670,977,177.
However, the recurrence of [BS] is only for counting, and not for generating, G(n).

In this paper, we use a different recurrence, for the set G(n), to generate directly the
elements of G(n) in total time O(|G(n)|), averaging constant time per element of G(n),
which is asymptotically optimal. This analysis does not count the time to explicitly print
out the graphical partitions as they are computed. The recursive algorithm is developed in
Section 2. In Section 3, we show how to implement the algorithm in constant average time
per element. In the remainder of this section we discuss the criterion we will use to test
whether a partition is graphical.

For a partition 7 = (71, ...,7), the associated Ferrers graph is an array of [ rows of dots,
where row i has m; dots and rows are left justified. Let 7’ denote the conjugate partition
' = (7},...,7},) where m = m; and 7} is the number of dots in the i-th column of the
Ferrers graph of m. The Durfee square of m is the largest square subarray of dots in the
Ferrers graph of m. Let d(7) denote the size (number of rows) of the Durfee square of .

The sequence

(1 — Ty, T2 — Ty, ooy Ta(r) — W(li(ﬂ))
is the sequence of successive ranks of = [At]. It will be convenient to work with the negatives
of the ranks, so, for 1 <7 < d(r), let r;(7) = 7] — m;. We call v(7) = [ri(7),...74(r)(7)] the
corank vector of .

The necessary and sufficient condition below, attributed to Nash-Williams, is proved in

[RA] and [SH].

Theorem 2 [Nash-Williams| A partition © of an even integer is graphical if and only if
for 1< j < d(r),

It can be shown that for 1 < j < d(7), the j-th Nash-Williams condition is equivalent to
the j-th Erdds-Gallai condition. Furthermore, if conditions 1,2,...,d(7) of Erdés-Gallai

are satisfied, then so are the remaining Erd6s-Gallai conditions [RA].



2 A Recurrence for G(n)

We begin with some notation. For a partition 7 = (71, 7g,...,m), define the size of «,
denoted ||, to be the sum of its parts: |7| = 71 + 72 + ... + 7. Define head(7) = 71 and
tail(r) = m, to be the first and last parts of 7, respectively. If 8 = (51, 82, ..., 5s) is another
partition and if tail(7) > head(5), then 7- 3 is the partition (71,72, ..., 7, 31,52, .., 3s) of
the integer |7|+|f]. If tail(7) > 7, then we use 7-(¢) to denote the partition (71, w2, ..., 7, ).
For k > 1, 7 - 1% is the partition 7 -(1)-(1)-...- (1) with k ones appended to the end of 7.

Forn > k > 1, let P(n,k) be the set of all partitions 7 of n with head(r) < k. Extend
P(n,k) to all integers n,k by: P(n,k) = 0 if n < 0 or k£ < 0 or if both n = 0 and
k < 0; otherwise, P(0,k) = {A}. (Recall that A denotes the empty partition.) Furthermore,
P(n,k) = P(n,n) if k > n.

For a partition, a, and for n > k > 1, define G(a,n,k) to be the set of all graphical
partitions of |a| + n which have the form a - g for some § € P(n, k) with head(5) < tail(a).
As was done for P(n,k), extend G(«,n,k) to all integers n, k by: G(a,n, k) =0if n <0
or k < 0 orif both n =0 and k < 0; otherwise, G(a,0,k) = {a} if a is graphical and
G(a,0,k) =0 if « is not graphical. If £ > n, then G(a,n, k) = G(a,n,n).

Note that if tail(a) > k and if n > k£ > 1, then any 7 € G(n, a, k) has the form 7 = a-
for some 3 € P(n,k). Since the first part of 5, namely (3, satisfies 31 = 7 for some i such
that 1 < i < k, 7 can be written as 7 = a - () - 8, where § = (i) -8 and 6 € P(n — i,1).
Thus, G(a,n, k) can be written as the disjoint union

k

G(a,n, k)= UG(a-(i),n—i,i). (1)

=1
Furthermore, for n even, G(n) = G(A,n,n). (In fact, by Theorem 2, G(n) = G(A, n,n/2)).

Our algorithm is based on the recurrence (1). We will successively consider each set,
G(Q'(l),n—l,l), G(Q'(Q),’IZ—Q,Q), (2)

and perform a test to determine if the set is empty. If nonempty, we generate the set
recursively.

The test is based on the following lemma.

Lemma 1 For a partition, o, and for s > 1, t > 0, the set G(a,t,s) is nonempty if and
only if the partition o - 1! is graphical.



Proof. If t = 0, G(a,0, s) is empty if @ = a - 1Y is not graphical and otherwise, it contains
only a = a-1% For ¢t > 0, if a = A, then by Theorem 2, G()\,1,s) contains 1* as long as
t > 2, otherwise 17 is not graphical and G(A, s,t) is empty.

Assume ¢ > 0 and a # A. Clearly, if a - 17 is graphical, then it is a member of G(a,t, s),
which is therefore nonempty. For the converse, suppose that 7 € G(a,t,s). Then by

Theorem 2, for 1 < j < d(7),
Y ri(m) 2. (3)

Since m can be formed by adding ¢ dots in some way to the Ferrers graph of a,
J J
t+ Z ri(a) > E ri(T) (4)
=1 =1
for 1 < j < d(a). (Note d(a) < d(7).) Since a # A, d(a) = d(a-1") and for 1 < j < d(a),
J J
dorila 1) =1+ 3 ria). (5)
=1 =1

It follows then from (3) - (5) and Theorem 2 that o - 1* is graphical. m

We show in Lemma 2 below that if one of the sets in (2) is found to be empty, then so

are all succeeding sets.

Lemma 2 For a partition, a, for t > 1, and for 1 < s < tail(a) — 1, if the partition

T = a-(s)- 1" is not graphical, then neither is the partition ¢ = a- (s + 1) - 1171,

Proof. Let d(a) = k and r(a) = [r1,72,...,7%]. Then d(7) € {k, k4 1} and d(o) €
{d(7), k+ 1}. If d(w) = k then s < k and

r(m)=[rm+ 14+ ro+1, ..o, 7s+ 1, Toq1, .0y TE] (6)
and the first k£ coranks in r(o) are
[ri4t, ro+1, oo, roy1+ 1, Togo, «ov, TE] (7)

Recall that o’ is the conjugate of a. If d(7) = k + 1 then o}, =k, mpp1 =5 > k+1,
dic)=k+1,and ox41 = s+ 1, so,

r(mr)=[rm+1+tre+ 1.+ 1,(k+1) - 5], (8)



r(o)=[ri+t,re+1,...,rp+1,(k+1)—(s+1)]. (9)

Since, by hypothesis, 7 is not graphical, by Theorem 2, there is a j*, 1 < 5* < d(7) such
that

sk

Z’I‘i(ﬂ') <" (10)

dori(o) = —c+ Y ri(w) < —c+j*
=1 =1
where
1 ifd(r)=Fand j* <s
) 0 ifd(r)=Fkand j*>s
“TY1 ifdr)=k+1andj* <k
2 ifdir)=k+1and j*=Fk+ 1.

In all of these cases, ¢ > 0, so,

Z 7‘2'(0') < j*7

i=1

and therefore, since 1 < 57* < d(o), by Theorem 2, ¢ is not graphical. m

The algorithm is summarized below. In Section 3, we describe and analyze an efficient
implementation and, in particular, show how the test of line (**) can be done in only

constant time.

GRAPHICAL-PARTITIONS(n)

{Main procedure: }

{Given nonnegative even integer, n, procedure generates all graphical partitions of n}
if n < 0 then return(0)
else if n = 0 then return(\)
else GENERATE(A, n, n)

procedure GENERATE(a, n, k)
{Assumes that n > 0, k > 1, tail(a) > k, and G(a,n, k) # 0.}
{These conditions hold when GENERATE is called by the main procedure and}



{they are guaranteed to hold in any recursive call to GENERATE.}
if n =0 or k=1 then output (a-1")
else begin
if £ > n then k — n;
1 — 1
done « false;
while not done and 7 < £ do begin
{Determine whether G(a - (¢),n —i,4)is empty: }
if a - (4)-17" is not graphical (**)
then done «— true
else GENERATE(a - (i),n — 1,1)
7 —1+1
end

end

3 Efficient Implementation

In this section, we first discuss how to implement the test of line (**) of the algorithm of

Section 2 so that it requires only constant time. We then analyze the resulting algorithm

to show that it requires total time O(|G(n)|), ignoring the time for printing the output.

For a partition 7, define () as follows. If 7 is graphical, then #(7) = 0. Otherwise, if 7

has corank vector r(7) = [r1(7), ..., rg(r)(7)], then ¢(7) is the smallest integer s such that

J
s+ Z(’I‘Z(’/T) -1)>0
=1
forall 1 <j <d(m). Now if, for 1 < j < d(7), ¢;(7) is defined by
J
cj(m) =) _(1-ri(r)),
=1
then note that

t(m) = max{0, e1(7),...,cqn)(T)}

We call the vector e(m) = [e1(7), ..., cq(n)(7)] the cumulative need vector.

(11)



We make use of the quantity #(7) in the following way. Note that by Theorem 2, the
partition 7 - 1 is graphical if and only if 2 > #(7). Thus, for the test of line (**) in the
algorithm of Section 2, we can determine whether a - (7) - 1"~ is graphical by computing
t(a-(7)) and then checking whether n—i > t(a-(7)). Theorem 3 below shows how to compute
t(a - (7)) and some additional information about a - (¢) from the quantity ¢(a - (i — 1)) and
some additional information about o - (7 — 1).

For a partition 7 and for 1 < j < d(7), define

m;(m) = max{0, c¢i(7),...,¢;(7)}. (14)

Then
) = mg(r)(T). (15)

Theorem 3 Let a be a partition with d = d(a). Define a - (0) to be a and let ro(7) =
co(m) = mo(m) = 0 for any partition . Then
(i) For 1 <i<d and i < tailla),
e () = rilac (= 1)+ 1
cila-(i)=cia(a-(i—1)+1—-ri(a-(i

B

(7)) = max{m;_1(a-(i—1)),¢
ta- (1)) = max{m;(a-(i)),H{a-(i—1)) - 1}.
(ii) For d+ 1 < i < tail(a),

m;(a

1

0;
cit1(a =cgla-(1—1))+1;
masa(a- (i) = max{ma(a- (i = 1), canla - ()}
ta- (i) = max{may (- (i), ta (i — 1)},

(iii) For d+ 2 < i < tail(a),

) = ras(a (= 1) - 1

cari(a (D) = capala (i — 1)+ 1

masa(a - (1)) = max{maga(a- (i — 1), cas(a- ()}

(o () = max{magr(a - (i), t(a- (i - 1))}.

Ty (o

(1))
(1))

Ty (o

(
(

Proof. Let a have corank vector r(a) = [ry,...,r4] and cumulative need vector ¢(a) =

[c1,...,¢q]. Then for 1 <14 < d and tail(a) > 7, the partition a-(7) has the following corank



and cumulative need vectors:
rla-(3)=[ri+1Lre+1,..,mi+ 1, m40,..., 74, (16)

cla-(1)=[aa—1,ca—2,...,¢i—1,¢i41 — 1,...,6q — 1. (17)

From this and (6) - (10), it can be verified that the theorem follows.
On the other hand, for d < 7 < tail(a), the size of the Durfee square becomes d(a- (7)) =

d + 1 and the corank and cumulative need vectors are
rla-(1))=[r+1Lreg+1,...,7¢+1,d— i+ 1], (18)

cla-(1)=[ca—1l,ca—2,...,¢4—d,cq— 2d + 1] (19)

and from this and (6) - (10) the theorem follows. m

To compute ¢(a- (7)), we use Theorem 3 as follows. Define the invariant properties A(¢)

and B(i) as below:

Invariant Properties A(¢) : Invariant Properties 5(¢)

(i) r is the corank vector of a(%) (i) r is the corank vector of a(7)
(i) ¢ = ei(a- (1)) (i) ¢ = cgpr(a- (1))

(iii) m = mi(a - (7)) (iii) m = mgq1(a - (7))

(iv) # = #(a - (1)) (iv) # = #(a - (1))

In the procedure GENERATE(e, n, k), if initially r is the rank vector of a, and if d = d(a),
t = t(a), and ¢ = m = 0, then r,d, ¢, m and t satisfy properties A(0). This initialization
is achieved by passing r,d and ¢ to GENERATE from the calling procedure. In its turn,
GENERATE must pass the required values of these parameters in any recursive calls it
makes.

Assume that 1 < ¢ < d and ¢ < tail(a) and r,d, ¢, m and c satisfy properties A(7). Then
after performing the following operations, by Theorem 3(i), properties A(i+ 1) are satisfied:

(a)rieri—}—l
(byec—c+1-m;



(c) m — max{m,c}

(d) t — max{m,t— 1}

Assume that r,d, ¢, m and ¢ satisfy properties A(d). Then by Theorem 3(ii), after executing
the following steps (1) - (6), r,d,t,m and c satisfy properties B(d + 1):

(1) d
(2)rg — 1

(3)

(4)e—c+1

(5) m — max{m,c}
(6) t — max{m, 1t}

By Theorem 3(iii), if properties B(7) hold for ¢ > d 4 1, then after steps (3) - (6), B(i + 1)
holds.

Thus, for any 7 satisfying 1 < 7 < tail(a), the quantity ¢ = #(a-(7)) is correctly computed
from t = t(a - (¢ — 1)) either by steps (a) - (d), or (1) - (6), or (3) - (6) above, depending on
the value of ¢, relative to d.

Note that steps (a) - (d), as well as steps (1) - (6), take only constant time. Thus,
computation of t(a - (7)), as well as r,d, ¢, and m, for a - (i), can be computed in constant
time from those same quantities for a - (i — 1).

We perform an amortized analysis of the total time required to generate the elements of
G(n). The standard way to do this, if the algorithm is recursive, is to do the accounting on
the tree of recursive calls. We show first that the number of nodes in the tree is O(|G(n)|).
The time spent by various parts of the algorithm is then, for accounting purposes, charged in
packets to the nodes of the tree in such a way that the total time required by the algorithm
is at most the sum of the charges at each node. Finally, we argue that the amount of time
charged to each node of the tree is bounded by a constant, from which it follows that the
total time is O(|G(n)]).

We analyze the total time required to generate G(n) by viewing the tree of recursive
calls, neglecting the time for the output step. The call made by the main procedure is
the root node and a node has one child for each recursive call it makes. As long as the

root is not a leaf, each leaf in the tree corresponds to a graphical partition and conversely.

10



Furthermore, if a node is an only child of its parent, it must correspond to a procedure call
of the form G(a,t,1), which is a leaf. Thus, the number of non-leaf nodes with fewer than
two children is no more than the number of leaves. This implies that the total number of
nodes in the tree is less than 3 times the number of leaves = 3|G/(n)|.

We now charge the work done by the algorithm to the nodes in the tree as follows. Each
iteration of a loop takes constant work and culminates either in a recursive call (in which
case the work is charged to the recursive call) or with the variable done being assigned the
value true (in which case the work is charged to the node itself.) If no iteration of the
loop is executed, then the node itself is charged (it is a leaf.) Finally, if the r vector is
made global and must be restored before returning to the calling procedure, the number
of changes made to r during a procedure is one more than the number of recursive calls
made by that procedure. Charge one change to the node itself and one change to each of its
children. In this accounting scheme, no node is charged for more than a constant number
of operations. Thus the total time is at most a constant times the number of nodes which
is O(|G(n)).

A PASCAL implementation of the algorithm is available from the second author. An
implementation has also been installed as part of Frank Ruskey’s Combinatorial Object
Server which can be accessed at http://sue.csc.uvic.ca/~cos.

We note that generating G/(100) takes about 4 minutes on a Sparcstation and |G(100)]
= 69,065,657.
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